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LIST OF SYMBOLS AND ABBREVIATIONS 

Notation 

a proportional to, attenuation coefficient 

distributed as 

z approximately equal 

E[»] expected value of • 

var['] variance of • 

cov[-] covariance, especially for vectors 

y E[ ], mean 
is 

a standard deviation=var2, or scatter 

kV kilo volts 

MV mega volts 

[A] Angstrom, 10  meters 

e electron charge 

m mass of electron e 
h Planck's constant 

c speed of light 

\ wavelength 

U voltage 

J current 

p specific gravity 

]i specific attenuation coefficient 

x specific absorption 

vi 



1.  INTRODUCTION 

The use of composite materials in light weight high performance 

components has become increasingly more popular [Reference 31], especially for 

aircraft components. Some of the advantages they offer over conventional 

materials are their increased stiffness to weight ratio while resisting 

to extreme environmental conditions, such as high temperature and 

chemical corrosion. Common to such components is their complicated 

internal structure. 

Examples of such components are carbon-carbon composites which 

form parts of rocket motors (fabricated from three dimensional woven 

preforms) and engine turbine blades with internal cooling passages. 

Among the various non-destructive evaluation (NDE) methods X-ray 

techniques are regarded as being very promising for detecting deep 

subsurface flaws. 

The success and fine resolution of computer aided tomography (CT) 

scanners in medical diagnosis [References 16, 17, 19, 41] for the detection of 

tissue density abnormalities in complex anatomical structures prompted 

the interest in how this technique might be adapted to serve as a new 

NDE tool. However, many of the objectives and the structure of certain cost 

functions and the degree of variability of structures to be examined 

distinguish the NDE environment from the medical. Thus, an investigation 

and somewhat different analysis of the performance of Tomography when 

applied to the NDE environment is called for. 

One of the first questions which arise in this new context concerns 



the understanding of the relation between the complexity of a test object 

and the number of projections (scans) necessary for detecting abnormalities. 

Intuitively there aooears to be a relationship. Consider first the problem 

of detecting a void in a homogenous cube by taking a face-on X-ray 

projection. Apparently a single projection would suffice to detect the 

presence of that void, although some uncertainty would remain regarding 

its precise three dimensional location. 

Alternatively consider the human head with its variable geometry 

and the many different materials with variable X-ray density of which 

it is made up. Here the detection of a slight abnormality-even with 

perfect measurements - would not be possible with a single projection. 

This is recognized in CT-scanners which use of the order of 100 projections 

for image reconstruction. 

Some of the materials of interest for NDE appear to have an intermediate 

level of structural complexity, when compared with above examples. 

Consider for example the rocket nozzle shown in Figure 1.1. A counterpart 

in terms of complexity, in the medical environment, is apparently the 

human breast with its glandular structure. It is interesting to note 

that for mammography two projections of the compressed breast provide 

often adequate diagnostic information and seem to be preferred over 

tomographic methods. These observations suggest to investigate the 

oossibility to examine also composite materials with an intermediate 

level of scans (projections), say two or three [Figure 1.2]. 

In NDE of composite materials, where often a large number of similar 

parts are inspected, further aspects enter consideration of limited scan 
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Figure 1.1: Schematic of a Cylinder manufactured from layers 
of woven carbon fibers. In this example the 
layers follow an Archimedes spiral. Interfaces 
are particularly susceptible to contain cracks. 
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Figure 1.2: Examples of 2-scan pencil beam and 3-scan fan beam 
arrangement. For clarity only one X-ray source is 
indicated in each example. 



tomography. For example it apnears that relatively precise prior 

information about a test object is available and should be used. 

Another asoect is the desire to reduce scanning time for high soeed 

NDE. The guestions are: how can this be accomplished and what are the 

limitations of possible technigues or should this techhigue be combined 

with other technigues such as full CT scanning of suspicious parts. 

In order to respond to such guestions a systematic approach is necessary. 

For the particular nroblem of flaw detection by radiographic technigues 

modern estimation theory provides this systematic approach. 

The first reguirement in the analysis through estimation theory is 

the development of models of phenomena which are capable of mathematical 

analysis. Typically, we start out with very simple models which show 

some select major properties of a problem. Then progressively other 

phenomena are incorporated into the simpler models and their performance 

degrading or improving properties are studied. 

Following this concent we start out (Section 2.1) with some basic 

considerations about projections and solutions to the full-scan CT. 

Next we introduce basic considerations and a description of what could 

be regarded as limited scan CT for discrete image elements; this is followed 

by the introduction of a probabilistic generalization. At this ooint 

in Section 3 it becomes important to study in more detail the basic 

physical phenomena of X-ray generation, absorption, scatter and detection 

before moving on to an analysis of the impact of these on estimation 

(Section 4). As we go along we develop the necessary models based on 

the basic physical phenomena and give approaches to optimal or suboptimal 

estimation. Finally in section 5 we give a comparison of the performance 

of the full scan with the limited scan technigue. 



2. BASIC CONSIDERATIONS ABOUT PROJECTIONS 

2.1 Use of Projections in Image Reconstruction 

The most basic way to study properties of X-ray images begins with 

the analysis of a highly idealized situation. As shown in Figure 2.1 

the projection (line integral) at every point s for a given projection 

angle e is discribed by the linear model  [Reference 10] 

b 
PQ f(s) = ; f[su (e) + tn(6)] dt (2.1) 
9     a 

where 

U{Q) =  (cos e, sin e) (2.2) 

nje) = (-sin e, cos e) 

Roughly, this quantity P^ f(s) is measured in CT. In full scan CT the 

problem is to reconstruct f[su^6) + tn(s)] 
= f(x.y) from many projections 

P . This oroblem has first been considered by Radon [Reference 34] and many 

methods for solving this problem approximately are available today [Reference [17] 

Since the projection as defined in (Equation 2.1) is a linear transform of 

f[x,y] it is appealing to approach the inversion (reconstruction) by a 

linear transform. Using a linear reconstruction scheme has many advantages 

on an analytic level and from a numerical point of view. A method which 

has become particularly popular in medical CT-scanning is the filtered 

backprojection method which provides one such linear transform of 

measured projections. 

The filtered backprojection method is specified in the following way 

[Reference 10]. Define the backprojection operator B. for direction 9^ by 

[Bi(Y)](x.) = ^.(si) = Y(xiCosei +x2sinei). (2.3) 



P0f(s) 
/* 

Figure 2.1: Projections P.f(s) as line integrals over a function 
f(x,y)    e 

object 

dector array 

Figure 2.2: Relation of picture elements aU) to projection b(k). 
From the area of intersection of the receptive field of 
detector k the elements of the matrix A may be computed. 
For the general relation shown analytic approaches are 
difficult. 



Then, for projection i, filter the measurement with the (noncausal) filter 

a.(s.) to yield a smoothed projection B.(s.) = P f(s.)*a-(s.) and finally 
11 119-111 

average over all projections e- to obtain an approximation f[x_] of the 

original f[x] as 

f[x] =1 I [B.CP^ Pa.OKx) (2.4) m i=1  i ei  i 

which, as shown by Davison [10] equals also 

1 m 

^r z (Pfl f*ai)(<x, u (ei)>) (2.5) 
m i=1  9i  i  - -  i 

where <, > indicates the inner product. In this case it is convenient 

to regard 

m 
F(x) i .^ Bi ai 

(x) (2.6) 

as the point response function of the method - a point function located 

at x=0 would precisely generate it. Note that the approximation in (2.4) is 

therefore equivalent to a 2-dimensional convolution (smoothing) of the original 

f(x) by means of the point response function F(x). Typically the filters a. are smooth 

ing the projection data leading to an image which is a smoothed version of the original. 

As we mentioned before, the filtered back projection method is one 

particular method for finding a linear transform of measurements. The 

method could easily be generalized by assuming a. to be nonstationary, 

in s or by assuming a more general linear transform than the filtered back- 

projection, [La.., say, by a general 2 dimensional weight function. In section 

section 4 we will discuss some indication in which way one may wish, 

to modify the filtered backprojection method. One of the conveniences of 

the filtered backprojection method, its numerical simplicity, would be lost when 

more general weight functions are used. For example, convolution as need in the 



filtered backprojection, can be executed very fast in the Fourier domain. 

An interesting aspect of the choice of different filters is the 

following uncertainty principle. Consider the reconstruction of a 

function f(x) by use of a desired point response function Q-, (x) which 

is normalized by / Q-1(x)dx=l. Next assume the point response function 
D   2 

to be scaled by Q,(x)=t Q(tx), t>1, which increases spatial resolution 

while preserving the normalization. Then, while minimizing the error 

between 0. and its approximation l/mzB.(a..) for all filters a.., that 

is minimizing for all t>l with respect to (a. ■) the quantity 

implies   [10] 

(l'^Vs;£BiKi"2i /KriV^i']2 (2.8) 

Roughly, this implies the product of spatial resolution and contrast 

resolution (error) are bounded (from below) for increasing spatial resolution. 

This result has a similar character as one arising in a stochastic environment 

(Section 2.3). 

After this basic introduction into some of the aspects of filtered 

back projection we will turn to the limited scan problem. This will give 

the opportunity to introduce aspects unique to discrete representation of 

picture elements. 

2.2. The limited scan approach - deterministic aspects 

Similar to the one before we will consider the arrangement shown 

in Figure 2.2. However instead of using continuous functions f we consider 

picture elements (pixels) over which the function is constant 



f(x,y) = p(i,j); id < x < (i+l)d ^z^ 

jd <y < (j+l)d 

o   ; otherwise 

Also, we replace the line integrals defininrj projection P in equation (2.1), 

be integrals over narrow stripes of width A and area A and evaluate 

P  f(s) = / /  f(su, + t nQ )dTdt (2.10) 
A      ~6    _e 

We may select only discrete values of s in the direction of u  which is -6 

expressed by 

s = k • A (2.11) 

In this case we can stack all p(i,j) into a vector a by setting 

aU) = p(i,j), SL =  n(i-l) + j as shown in Figure 2.2, Ki,j<n. 

Similarly stack all P f(kA) for all directions of e into a vector b^ 

and express the linear relationship between a^, the pixels and b, the 

measurements by 

b = Aa (2.12) 

Here, the reconstruction problem is to find a_ given LK Clearly for 

arbitrary A a solution need not exist (inconsistency), there may be a 

unique solution - or infinitely many. 

A general solution to (2.12) is given by [35]. 

a = A"b + (H-I)z (2.13) 

where A" is any generalized matrix inverse (g-inverse) of the M x N matrix 

A, satisfying A A"A=A, H = A"A, and .z is arbitrary. The solution is 

complete if A" has maximum rank regardless of rank [A], that is rank [A ] 

min (M,N). Note that rank [A] need not be maximal e.g. rank A<min[M,N]. 

10 



Since we assume Equation (2.12) to be constructed from Equation (2.10) 

consistency of solution will at the moment not concern us (here it may be used to 

check numerical accuracy). What does concern us is the possible uniqueness 

of solutions in Equation (2.13). Clearly, if H-I ^ is unique, and required 

rank [A] = rank [H ] = N. These relations sugqest the following terminology: 

the full scan provides us with rank[A]=N, while the limited scan technique 

is one which provides us with rank [A]<N. 

We will pursue now limited scan techniques somewhat further. For 

a general matrix A it may not be easy to find its rank numerically. 

However it is useful to look at certain special cases for which the rank 

can be determined analytically. For this purpose consider the arrangement 

of orojections shown in Figure 2.3. For squares with unit area the matrix 

A in Equation (2.12) becomes 

n-times 

iTTT — 

1 1 1 1 

1111 

1 1 1 1 

1         1 1 1 

1         1 1 1 

1 1 1 1 

1 1 1 1 

N-times 

(2.14) 

N-times 

For this matrix we have M=2n, N=n and, as can be shown easily by 

elementary row operation, rank[Al=M-l.  (We remark - if the width 

of stripes for projection in Equation 2.11 is made smaller rank A=2n-1 regardless of M). 

An interesting question concerns now the part (H-I)z in Equation (2.13) 

since this part is independent of measurements b. In particular we are 

interested in understanding the pattern of values of pixels p(i,j) which 

correspond to this part. This problem may be approached in the following 

11 
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Figure ? 3- Relation of oicture elements (pixels) p{ij)=a(«.) 
' ' to projections b(k) for 2-scan technique. 

density a(2)=0 

density a(l)=2' 

density a(ji)=l 

Figure 2.4: A basic pattern which is not observable bv the 2-scan 
technique of Figure 2.3. This pattern can be moved into (n-1) 
position and forms a complete basis for all unobservabie 
patterns (assumption of shift in only multiples of the smallest 
unit). 

12 



way: we look for a set of k linearly independent patterns with k=rank [H-I]. 

These (non-unique) patterns correspond to a basis in the non-observable part 

of the space of a^ and may be regarded as basic non-observable patterns. One 

solution for a set of basis vectors is one corresponding to the patterns shown 
2 

in Figure 2.4. There are clearly (n-1) such patterns, each of which is linearly 

independent of all others. In order to show that this set is also complete 

(e.g., spans all of (H-I)z)find rank [H-I]. Now since (I-H)2=(I-H), that is, 

(I-H) is idempotent, and rank [H] < rank [I], 

rank [I-H]=trace[I-H]=trace[I]-trace[H] (2.15) 

Furthermore 

rank [H>rank[A"A] - min(rank[A'], rank [A]) 

= rank  [A] (2.16) 

since rank [A-] _> rank [A] (35). So we have rank [H1=M-1 =2n-l. 
2 

Thus with trace [I]=n we obtain from Equation (2.15) 

rank[I-H]-n2-(2n-l)=(n-l)2 (2.17) 

2 
Hence the (n-1) pattern as shown in Figure 2.4. form a complete basis of 

the unobservable space. In other words, all other unobservable patterns 

can be formed by linear combinations of these basic patterns. Some 

examoles are shown in Figure 2.5. 

The consequence of this above result is, one should avoid positioning 

of objects, which are to be examined, in such a way that critical components 

form these basic patterns. Actually, one should avoid all positions which 

form any linear combinations of these basic patterns. For simple objects 

with only few critical places this may easily be judged.  In the more 

general case, when there are many critical locations one should write down 

13 



Figure 2.5: An example of an unobservable pattern generated by the 
linear combination of basic unobservable patterns (2-scan 
technique), of figure 2.4. 

three scan directions 

Figure  2.6: A basic unobservable pattern for the three scan 
directions shown. 
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the projection matrix Lof just these k locations and examine whether the 

rank of this orojection matrix is equal to I,     If so there is no problem 

in detecting abnormalities. If, however, rank [L]<£ it is either necessary 

to position an object differently or to take additional measurements until 

rank [ L]=£. 

All the considerations discussed here carry easily over to the three 

scan technique. In order to obtain a simple matrix A here it may be more 

usuful to consider six cornered pixels giving an arrangement like in 

honey combs. For such an arrangement the corresponding matrix A is easily 

written down for a given range of pixels and allows again analytic 

evaluation of its rank. From analogy considerations to the two-scan 

technique a set of basic unobservable patterns will have the shape shown 

in Figure 2.6. 

For the fan beam 2-scan technique the choice of a convenient shape 

of oixels is somewhat more difficult. But consider that this arrangement 

corresponds to a collinear transformation of the parallel beam configuration 

as shown in Figure 2.7 and may thus be analyzed similar to the parallel 

beam problem. In some situations it may be useful to combine pixels 

especially near the X-ray source if it is desired to maintain approximately 

constant pixel area. The same approach of a collinear transformation 

can be taken for the 3-scan technique (Figure 2.8 ). All of above 

results will thus not change since (except for the focal point) they 

are in a 1-1 correspondence to the parallel beam configuration. 

In summary, the complete solution to the inverse problem 

b=Ax^ is given by Equation (2.13). It is clear that for an increasing 

number of pixels the solution space x grows very fast regardless of the 

soatial resolution of the detectors (Equation 2.17), Thus, in order to say 

15 



F, 

Figure 2.7:  Collinear transformation, as in perspective, can be 
used to transform the 2-scan parallel beam projections 
into a fan beam geometry with X-ray sources at F and F , 

Figure 2.8:  Provided that all three X-ray sources F , F„5 F lie on a 
straight line a collinear transformation of the parallel beam 
geometry permits to use a transformed honeycomb pattern for picture 
elements while maintaining the projection matrix A simple. 
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more about ,x given ^ more constraints have to be placed on x. Beside the 

introduction of additional scans in new directions, this space can be 

constrained in a probabilistic way and is subject of the following section. 

2.3 Probabilistic approaches 

This section starts out with an exposition of the problem in a Bayesian 

framework. Then, a simple model for quantum mottle in measurement is intro- 

duced and approximations for dealing with the nonlinear relationship between 

image and measurements are developed. Next, two limiting situations and their 

value for the limited scan problem is assessed. 

One limiting situation assumes large measurement noise - the other 

perfect measurements. In this latter case the stochastic nature of the problem 

is maintained by assuming an object of constant average density, but with 

random variations of this density. It is shown, for the two-scan technique, 

that an optimal detection scheme is computationally not feasible and that one 

version of a suboptimal scheme which uses the correlation structure of measure- 

ments discriminates quite well against flaws. 

Another suboptimal approach, neglecting the correlation structure of 

measurements, is shown to perform similarly well. In this approximation, the 

distribution function of certain random variables remains unchanged except for 

the mean, when alternative hypotheses are made (presence vs. absence of a flaw). 

With this suboptimal approach a sequential probability ratio test is ultimately 

developed and an example of its performance is given. The main conclusion is 

that for most materials with random density variations in the percent range, a 

rather large number of scans has to be performed in order to decide about the 

presence of flaws. For the example given, (with rather large quantum mottle) 

this number comes closest to the number used for full scan tomography. However, 

the average cost due to using this procedure is shown to be small, almost independent of 

17 



the loss which would arise with failure of the component due to presence of 

a flaw, simply because the probability of errors is extremely small. 

Let us turn now to the exposition of the new framework. Probabilistic 

considerations enter the limited scan and the full scan techniques in 

several ways. Two important aspects are the well known quantum mottle 

and the, possibly not so obvious, random material density variations. The 

latter may result from variations in chemical composition, microporosity 

or, on a still larger scale, from variations of location of fibers such as 

in woven performs. 

As before we consider the evaluation of (the absorption due to) pixels 

p(i,j) represented by a vector a_   given some measurements ID. This time 

however we have a probabilistic description of the absorption of the 

pixels and a probabilistic description of b^ even when a^ is fixed; this 

latter description accounts for uncertainty due to quantum mottle. More 

formally we assume to know the distributions p(aj and p(b|cO and wish to 

obtain the distribution p(a|b). This problem is solved formally by Bayes 

rule 

p(a|b) = P^l^.-P^a)   , (2.18) 
^-'-^   /p(b a') pU'jdaJ 

A 

In practice, solving equt. (2.18) can be difficult or even impossible. 

This is due to the necessary integration in the denominator of Equation 

(2.18). For our purposes of image analysis this integration has to be 

performed over a 10 ... 10 dimensional space when images with 100x100 

or 1000x1000 pixels resolution are desired. 

Several approaches exist to dealing with this problem. Mainly, they 

are based on approximations. First, one may try to replace the general 

distribution with certain types of analytic approximations which then allow 

18 



analytic integration. Second, especially when the prior distribution is 

"flat" such as when a^ is highly uncertain, plbjaj can approximate the 

shape of p(ajbj (the denominator, when the measurements b^ are given 

reoresents merely a scaling). We note that maximizing p(b|aj leads to 

the so-called maximum likelihood (ML) - estimator which has often many 

desirable properties. 

The approach based on analytic approximations uses distributions 

for which the posterior p(ajb) belongs to the same simple family of 

distributions as the prior p(a). However the distribution pair p(bjaj 

and D(CO need not belong to the same family of distributions and are 

called conjugate. Typically, these conjugate oairs are used for sampling 

schemes for which ^ is a linear function of a. If this condition of 

linearity is not met (as in X-ray imaging) further approximations are 

necessary to estimate a,. 

At this ooint an important aspect of estimation should be clarified. 

Estimation is closely linked to cost structures in a problem. For 

examole, an estimate of a quantity is a good (bad) estimate if the 

expected cost associated with it is small (large). For many reasons the 

quadratic loss functions in the error of an estimate arises naturally, and 

is used in analysis of many problems. Thus for an estimate ^ of a 

quantity x^ we associate often the loss 

L(x) = (x-x)T M(x-x) > 0 (2.19) 

and the risk (the average or expected loss over all estimates x) 

E[L(x)] > 0 (2.20) 

where M is some positive (semi) definite matrix. The matrix M will 

typically reflect the particular cost structure in the neighborhood of the 
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true value x. The objective in estimation can now be viewed as the problem 

of finding the minimum of E[L(x)]. 

After these preliminary remarks on finding probability density 

functions and good estimates we may turn to the particular problem of CT- 

scanning. First we wish to find an approximation to the nonlinear 

relation of material density to photon count. A frequently used approximate 

model assumes exponentially declining photon flux. Thus for a source 

releasing I photons a detector sees on the average 

up E[I] = I0 exp {- ^ f(t,s) dt ds} (2.21) 

The distribution of the photon count is well described by a Poisson 

density 

p(I) = e-yI  E (uT)
k 6(1-10 (2-22) 

When the photon count is large one can make use of a Gaussian approximation 

F of the cumulative Poisson distribution P, e.g. 

P(I <C) = F(I <C) + e (2.23) 

where e is often negligible. For E[I] of more than a few hundred, which 

will be a typical situation in X-ray imaging, this approximation is very 

useful. Once we characterize the photon count by a Gaussian distribution 

we need only to specify its mean and variance to specify the entire 

distribution. For this case one has 

Mj = E[I] 

a2! -  ECd-u/] = yj (2.24) 

Consider now the problem of estimating G= / f(t,s). It is well known 
A 
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that the ML-estimator of G formed by 

Gb= -£n I/Io (2.25) 

leads to biased estimators e.g. E[Gb-G]=g^0 [Reference 36]. This implies that a risk 

of the type (Equation 2,20) is not minimized by G, . However it is easily shown 

that correcting for this bias by using 

G = Gb-q (2.26) 

does minimize Equation (2.20). Rockmore [Reference 36] gives for g (for the Poisson- 

case) 

9 = 2^ +—T + -V+ ••• t (2-27) ^1   12yJ    4yJ 

For us the oroblem exists that, due to the material uncertainties, we 

do not know yT a priori. So, again we have to use an estimator- 

possibly one a posteriori. It apoears that for the situation in limited 

scan CT for NDE the bias could easily be made small relative to other 

effects such as the uncertainty expressed by the standard deviation of 

G. 

The variance of G is given by [36 ] as 

t   It should be made clear, however, that this series expansion requires 
for its convergence a pseudo-Poisson variate of I: namely it is 
required that P[I=0]=0. Since P[I=0]=e"tJI for a Poisson variate this 
quantity is indeed extremely small for uT> 100. The requirement 
P[I=0]£0can be satisifed by rejecting any measurement with 1=0. In 
fact we can even afford to reject all I<yT/2 provided yT>100. For 

example for y^lOO P[I<50]<10" . So in all series expansion in which 

we may need an estimate of yT and replace it by I, convergence occurs 

rapidly with large probability.  It appears that with much larger 
probability other effects would result in degradation of performance 
of any practical estimation scheme than are due to above approximations. 
Subsequent expansions are all based on this approximation. 
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v = ^ + ^+ 43  + . . . (2.28) 

Thus even for "small" photon counts in the order of a few hundred 

the ratio of g//v is only a few percent. Nevertheless it is easy to 

correct - at least to first order - the bias by using the revised 

estimator (for I large, say I>100) 

G' = -£n(I/Io) + J- (2.29) 

From some rough calculation (using a simple linearization technique and 

a 4a threshold) one can evaluate performance for this estimator: 

with only .01 percent probability does the residual bias exceed a 

fraction f = 4//T of the uncorrected bias. This suggests that the ratio 

of residual bias to standard deviation exceeds 2/1 in less than .01 percent 

of all cases. One may argue further that of the order of I independent 

measurements are necessary to detect with 95% probability such small 

bias. Of course, if desired a still more sophisticated approach may be 

used to correct bias but other uncertainties associated with the polychromaticity of 

X-rays will become important suggesting a more rigorous modeling of 

nonlinearities (Section 4.2). 

Let us return now to the general problem of estimatina p(a]b}. 

As we have shown, the relation between a^ and b^ are nonlinear - but we 

discussed how, and under what conditions (e.g. I>100) linearization of 

that problem becomes usuful. We may thus consider the linearized 

estimation problem (linearized around the measured b). For the linearized 

problem the probabilistic relation between a^ and b are (in contrast 

to Equation 2.12) described by 

p(a) ~ N(jLa, Ea) (2.30) 
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and 

p(bja) = N^U), Sb|a(a)). (2.31) 

As can easily be shown, due to linearization the second order moment 

in terms of E. i.,(a) is approximated by St,i-(iia). (If such an oa Daa 

aoproximation is insufficient certain iterative procedures described 

by [Reference 21] can be used). 

We are now in the position to solve approximately Bayes theorem 

Equation (2.18); p(b|a) and p(a) are conjugate distributions which are 

fully described by their first and second moments y^ and E respectively. 

In this case the posterior mean u.IL, and covariance matrix E i, are 
—a | D a | D 

found by the Kalman Filter algorithm [References 21, 37]. 

W = Ea A*
T [A*EaA*

T + E^"1, 

^alb^a" WA*V 

(2.32) 

(2.33) 

(2.34) 

Here however 

A* 
9b 

3a" 
(2.35) 

and with Equation (2.29) 

bi = -in{l./lo)  + 2J7 (2.36) 

It is easily shown (Appendix A2.1) that A* is closely related to A in 

Equation (2.12) by 

1 

A^ 

1 + 21 o 
1 

1 + 
1 
21, 

L0 

A (2.37) 
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being equivalent to a slight rescaling of the dependent variable b. 

The convariance matrix Eb|a is, due to the independence of quantum mottle 

between detectors, diagonal: 

'bla 

'1 

o 

(2.38) 

where from Equation (2.23) we may use for the estimates of v. the series 

'i  I 
+ -K +^ + 2 '    3 

217   121^ 
(2.39) 

which converges with large probability rapidly (for y.>100) 

We are now in the position to answer some questions for the limited 

scan problem. First let us consider the problem of using transmission 

data which is relatively noisy due to quantum mottle rather than 

material density variations. More formally assume 

xTA* EaA*
Tx << xT z, . x 

a D ' a 
(2.40) 

2 2 
and let E3 = a I and Eki- = a. I. For the purpose of the current 

a     a D d     D 

analysis replace also A by A (Equation 2.37) as this simplifies notation and 

does not change any of the conclusions. In this case we can approximate 

Equations (2.32)-(2.34) by 

w 

Ealb 

a    b 
2      -2    T 

aa %     A 

aa
2(I-aa2a^ATA)~~aa

2I 
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Roughly, what is seen in this algorithm is very similar to the unfiltered 

backprojection method - data in b is evenly distributed in its effect over the 

corresponding strip i over which measurement i has been taken, weighted by the 

ratio of "signal" power (c^a) to measurement noise power v.. 

Let us evaluate the useful range of above model. For our situation, assume 

materials with aa = x% density variation over, say 5mm x 5mm pixels and assume 

n = 100, corresponding to an X-ray path of 500mm. The standard deviation of a 

projected measurement is 

op = v^ cra = 10x% 2.42 

This quantity was assumed to be small compared to quantum mottle, e.g., 

ap « ^ 2A2 

or by Equation (2.28) 

ap « Uj) 2 2.44 

We assume usucflly pj > 100 and thus require 

i 

^ « (yj)"" 2.45 

In this case, we obtain the requirement 

aa « 1%. 
a 

2.46 or x « 1. 

As an alternative way to investigate the estimation problem, we may 

check what happens if we perform very precise measurements, e.g., I. -**>, I /i ->c in 
i    r o i 

Equation (2.36) and look at the simple 2-scan problem. In this case, we encounter 

a difficulty with Equation (2.33). The matrix A*E A*T + E, , becomes singular 
a     D | a * 

since rank [A] as defined is not maximum and E. . -HK There are several ways 
u | a 

to deal with this situation. A simple possibility is to eliminate those rows 

of A in equation (2.14) which are linearly dependent on all others; omitting 

for example the last row would generate a new matrix A with maximum rank. Thus 

we are again in a position to use, although with one less measurement (but without 
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loss of information) Equations 2.32-2.34. Now we obtain 

^|b = [I - I/1 [AZ^V A] ^ + E^E-r1^ 2.47 

Ea|b = [I - Za A
T [-r1^ (2.48) 

Here we would again like to know how an estimate ^ is modified by 

perfect measurements b and to what extent the precision of this 

estimate is changed. 

For this purpose consider the model of equal uncertainty throughout 

all oixels, and that no pixel depends on any other pixel (maximum 

entropy). This corresponds to 

Z* all (2.49) 
a    a 

To investigate this problem we computed the matrices A, A A , (A A )  , 

AT(A A1)-1 and AT(A AT)A for n = 1,2,3,4 (Tables 2.1. - 2.4). As 

expected these matrices exhibited some simple patterns for the 

distribution of their elements. Furthermore by checking the elements 

for n=2 and n=3 a simple relationship of their values to n was found 

and confirmed for n=4 and 5. 

The matrices A and A A are trivial and we refer simply to tables 
~ ~T _i 

2.1-2.4. Somewhat more interesting were the matrices (A A )  (which 

we will use repeatedly), the update matrix A ( A A )~ and the matrix 

A (~)' A which expresses improved precision in the description y,, 

of the material. We found that only a few distinct values could arise 

in the matrices and there is good reason to believe that these are 

all possible values for any n. The values relate to the following: 

1. the relation of one pixel to itself 
2. the relation of one pixel to the stripe in which it is contained; 

3. the relation of one pixel to another pixel within the same stripe; 
4. the relation of one pixel to one in another strioe; 

5. and whether measurements relate to the side on which one strip 
of measurements has been removed (recall the last row of A has 
been omitted). 
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TABLE 2.1: Matrices A, AAT, (AA7)!1, AT(AAT)"1, AT(AAT)"1A 
for n=l; Note: det(AAl)=l 

$   RUN   TOMOMAT 
. DIMENSION   OF   N   =   ? 
Ai 

.1.000 

1.000 

IDGT»D1»D2»IER   = 
(AA";#   = 

1,000 
A " (AA " ) f   =» 

1.000 
A" (AA!! ) IA   - 

1.000 

50   1.000        0.000 

TABLE 2.2:    Matrices A, AAT,  (AA7)"1, AT(AAT)"1, AT(AAT)"1A 
for n=2; Note:    det(AAl)=4 

RUN   TOMGMAT 
DIHFNSTON   OF   N   :'-  ^ 

■1,000        1.000 0.000 
0.000        0.000 1,000 
1.000        0.000 1.000 

AA"- 
2.000        0.000 1.000 
0.000        2.000 .1.000 
1.000         1,000 2.000 

0.000 
1.000 
0.000 

.TDGTfDi.D2 »IER = 7 0. 250 
(AA")-^ » 

0.750 0,250 -0.500 
0.250 0,750 •-0.300 

-0.500 -0,500 1 .000 
A"< AA")f = 

0,250 -0.230 0,500 
0.750 0.250 -0.500 
-0.250 0.250 0.300 
0 . 2 5 0 0.750 -0.5C0 

A"(AA")iA ~. 
0.750 0.250 0.230 -0.2 30 
0.250 0.750 •-0.250 0.2 30 
0.250 ■0.250 0.750 0,2 30 

■0.230 0,,   'O 0.250 0 . 7 50 

4.000 
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For these various matrix  elements t-  it has been found for nxn pixels 

(see table 2.1-2.4) which are,  ordered by magnitude 
 pyamplp  nf   Inratinn  

'0 
2n-l 

In 
-1       "0 2n-l 

to     =     t 
fn-1 

2      ul    n 

t3      t2   In 

t4 = 0 

IMMAAW^ 

relation for a pixel to itself 

....  for pixels within a stripe for side 
with all stripes measured 

within stripe for side with omitted stripe 

between pixels not sharing a stripe 

for update from side with omitted 
stripe 

determinant (2.50) 

What is important here is the asymptotic behavior as n-> ». It is seen 

that, as one might suspect also from other considerations, the 

behavior of these terms, is 

t0 -  2/n 

t1 = 1/n 

t2 - 1/n 

t3 - 2/n' 

(2.51) 

Checking some more the behavior of AT(A A )" suggest again a performance 

of updating the pixels (except for the ones in the stripe corresponding 

to the missing row in A) very similar to the^ filtered back projection 

(Figure 2.9). Note, that the mean of a., changes by 

=  b.t, + b.t, -(b,+b,)/n (2.52) Ay a ij   i 2   j1  v i j 
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.188 .188      .188 .438 

-.063 

) 
-.063    -.063 

| 

.188 

-.063 -.063    -.063 .188 

.188 -.063 -.063    -.063 

[1] 

Figure 2.9: Example for updating when b" = (1,0,0,0,0,0,0). 
The element [1] is not observed as it must be linearly 
dependent on all other values in b. This example is 

obtained from AT(AAT) in Table 2.4. 

AP(Q) 

2 T a. 

Figure 2.10: Distributions of the quadratic terms Q and Q1 where x Mx 
is used.    Q will typically arise in the problem 
formulation associated with HQ and Q' with H, If however 

a flaw e at location k is known a complimentary quadratic 
form (x-£)TM(x-£) can be set up. For this form the role'', of 
Q and Q' are reversed. 
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if both strioes i and j are measured. However it changes by 

AV • = bi ' V 2bi/n 
I 5 J 

(2.53) 

for the column j in the image which contains no measurement - as the 

corresponding observation in A has been omitted. Note that from Equation 

(2.50)t1 + tp = tg. With regard to the variance for pixel a(i,j) observe 

it declines only by a factor of (l-to) which does not seem to be of much 

significance. Note: E ,, is strongly diagonal although only of rank (n-1) . 

In order to detect and locate a change in density it will be required 

2 
to have a large change Ay   relative to a . This is somewhat of a problem 

a. . a 
1J 

as will be shown because there is only weight b-tp added to the strip containing 

all pixels p(i,j) i=l...n and weight b.t, to the strip containing all pixels 

p(iJ) i -  l...n (aside from those corresponding to the missing row in A). 

Performance of a flaw detection and location scheme, based on this information, 

can now be approached by formulating a decision problem [Reference 11]. 

2.3.1 Decision theoretic approach 

Let the parameter space fi in the presence of a single flaw (in 

any pixel) consist of n values w^ plus a value wo for absence of flaws. 

The loss table L for decisions d ... dn2 would possibly be 

d0 dl d2    ....      c 1  2 
n 

wo 0 e e e         e 

w1 f g h h  ....      h 

w2 f h 9, 

V- f h..  t 3 

(2.54) 
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With regard to the values expressed in the loss table, f will probably 

be the largest as the cost of missing a flaw may be deleterious. 

The value of e would possibly be next since some more extensive 

testing would be necessary to correct the false alarm or to loose the 

good test object. Values g and h may be nearly the same, although 

h may be slightly larger corresponding to the additional effort to 

correct estimation of flaw location and insure it is not at a vital 

point in the object. Hence we would typically have 

f » e>h>g (2.55) 

In order to obtain a well specified flaw detection problem we set 

up a risk minimization problem. For this we require some prior 

estimator ^ of the probability that wk occurs [flaw in pixel (i,j)]. 

When 5 is the probability of no flaw and all other ?. are equal 

dwk) = ?k = l^o (2.56) 

n 

If we take decision dk with probability pk the total risk becomes 

[Reference 11] 

pU,d) = z    E ?kp  ^(w. ,d ) = Jlp (2.57) 

The decision which minimizes p(s,d) [depends on the estimate of 

the distribution p(aj3   is called the Bayes decision d*.  In order 

to minimize p((;,d) we need to choose a function 6(a) and have only 

to minimize, following [Reference 11] 

2 £[w£, 6(a)] ck p(a wk) (2.58) 
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(Note here p(a|wk) may include the measurements b and may then be 

written p(a|w. , b)). One slight problem exist now: clearly at the 

location of a void like flaw both mean and variance will be smaller 

than at other pixels and this should be expressed in p ,  and E , . ; 

in the extreme, both would have a zero component at the corresponding 

locations. In this latter case the new distributions are obtained by 

precisely omitting these elements (e.g., thek  element of y i  and the k 
K 

row and columns in z ,  are removed.) A second problem exists in specifying 

p(a_|wk): As mentioned before, (under wo) s i. is not of maximum rank but of 

rank (n-1) due to the assumption of perfect measurements. Thus, a vector 

a^with (n-1) components carries all information about the image and we need 

to consider only this vector for any decisions (e.g., remove any two orthogonal 

strips which do not contain a void). For our Gaussian model 

p(a|wk) = (M£/2~  |iaexp[-l(a(k)-lL(k))
Tz(|;

1
)(a(k)-lL(k))]   (2.59) 

I k j 
? 2 

where a = (n-1) under w (and^, = (n-1) -1 under wk, k / 0). 

Now, minimizing Equation (2.58) with respect to a decision 6(a) requires 

to search over n +1 possibly values of 6(a) and to choose dk which 

minimized Equation (2.58). The approach is unfortunately not feasible, simply 

-1        2      2 
because of the size of zk , a (n-1) x (n-1) matrix. 

Alternatively, decisions can also be based on the perfect 

measurements b^ directly. This approach is slightly simpler but quite 

similar. The main value of this approach is that it provides a 

relatively simple way to evaluate performance of certain schemes. 

This can permit one to suggest under what conditions measurements 

are of value. For example, it is perceivable, that measurements bring so little 
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information that it is not worth taking them - suggesting another 

measurement technique should be used instead. 

Consider the distribution of p(b). Since flaws can be located 

in any pixel p(b) will be a mixture distribution 

p(b) = E Cn p(b|w.) 
j  J    J 

The loss table is specified by 

(2.60) 

do dl 
wo 0 e 

wl f g 

(2.61) 

where the notation of Equation (2.54) is used. 

As to the model of p(bjw.) we assume all elements of b^ to be 

linearly independent e.g. by forming A from A in Equation (2.14), by omitting 

the last row. We may at this time neglect the (small) influence of 

a void in one pixel on the covariance of b^ however we do not neglect 

the effect of a void on the mean jju. Taking the best decision amounts 

to minimizing 

n 
E  £[w  6(b)] ?. p(b |w. ) 

k=0     £ K K 

n2 

= I      ii[w£ 6(b)] ^  —j^T exp[- ^(b-^tk))1 ^V)]  (2.62) 
k=1 9     2 IH^ 

The advantage of Equation (2.62) over Equation (2.59) is the size of the matrix 

Eu - it is only (2n-l) x (2n-l) in case of using A from the two-scan 

35 



technique. Furthermore, we know explicit solutions to z, 1 = a"2(A A1)-1 (by 
2 

£, = cr.I) from Equation (2.50) and I.  is also known, a   a '    ' b' 

Still it is difficult to find the location of a flaw by minimizing 2.62: 
2 

for n pixels to be tested, each requiring evaluation of the exponent of (2.62), 

amounts to the order of c-n (c«5...10) operations. Even for a modest n=100 

the computational burden gets out of hand. 

2.3.2 Distribution of quadratic and bilinear terms 

We may approach the problem differently. Roughly,since we wish to minimize 

Equation (2.62) p(bjw ) should be small if a flaw is present. We may then ask - how 

large does a flaw have to be in order to make p(bjw0) small (relates to the 

power to reject the null hypothesis). 

For this purpose, we consider the two scan techniques and assume a 

void within one pixel occupying a fraction e of the area. Corresponding to 

this location (i,j) the measurements will be decreased in the ith and jth 

strip by e, 0 < e < 1. Now, the distribution of the exponent of Equation (2.62) if w 

is true (with the notation Sb(w ) = Ej, is given by a x2 distribution, that is 

Q = xT z^1 x~x22n_1(2n-l) (2.62) 

where 

_x = b^ - JJ 

2 
For (2n-l), large, x2ri_1 -  N(2n-1, 2n-l). Thus, under w and for large n, 

p(b!wo) will be considered small (or too large for the model) in the rare 

instances when 

|xT Sjj"1 x - (2n-l)| > T /(2n-l) (2.64) 
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where we will typically consider T=3..,5 (Figure 2.10). 

If however a flaw is present inequality (Equation 2.64) may easily come 

true.  In this event x^will be changed to 

x' = x - e[000..1..000..1...000]
T (2.65) 

where the nonzero components at locations k and £ express the void in two directions 

of projections. The distribution of this new exponent Q' can be found by 

-1    2 
use of E.  = a M 

b    a 

Q'   = ^a"2 xV " 2eaa"2([rowk(M)]  + [rov^inUx + aa"2
e
2(mkk+2mk£+mu) 

(2.66) 

Here, M is know to be (A A )" . Although the distribution of Q is a 

2 
noncentral x a Gaussian approximation should be possible. Finding an 

approximation or a bound would be interesting. In fact we know all the 

m, 's and the covariance structure of x. A lengthy and tedious 

operation (see appendix A2.2) using the approximations to the nv 's in 

Equation (2.50) yields an interesting result (k and «, are from orthogonal 

scans) with regard to the variance of second term in Equation 2.66: 

y = var[(2ea "2 (row, (M) + row„(M))x] -{2e)2-   2a "2 n"1 

2 -2 -1 A  ? 2 
= 8e aa  n  = Sea^ (2.67) 

Now, depending on the relative value of 2n-l and y either the first 

term in Equation (2.66) or the second one will generate most of the spread of 

the distribution of Q'. For 

— = c 4 (2.68) 

the term y will become dominant for the variance of Q'. (e.g. for very 

37 



homogenous materials). The distribution of Q', when approximated by a 

Gaussian distribution, is specified by its mean and variance. For the 

mean [from Equation (2.66) and Equation (2.50)] and the variance when 

equation 2.68 holds (very homogenous materials) 

ECQ'] * (2n-l) + 2e2 a'2  n"1 
a 

varCQ1]^ 8e
2 a'2  n_1 

a 

(2.69) 

implying 

Q' ~N(2n-l +2e2a "2 n_1, 8e
2 a'2  n"1) (2.70) 

a a 

while for the correct model 

0 ~ N(2n-1, 2n-l) (2.71) 

Both distributions are drawn in Figure 2.10. They show how much of the 

distribution of Q' falls into a region which contains almost all of Q. 

This implies, if we observe a value Q* which satisfies 

|Q* -(2n-l)| > T/^THT (2.72) 

we are, depending on the threshold value T (T typically 3...5) almost 

certain of the lack of fit of the assumed model. However, conversely, 

when 

1Q* -(2n-l)| ±J/2^T (2.73) 

there is still a good chance that this is simply due to the wide spread 

of Q' when using the false model. Thus a rough bound for accepting the 

false model (decision dp, Z^k)  when w. arises with probability t,.   is, from 

elementary considerations (Figure 2.10), use of Equation (2.70) and given value T, 



r i 2   -2 -fi 
|- 4 E aa  n J exp 

;   t       a        ^^ 

(2.74) 

Conversely, the error probability P2 for rejecting the correct model is found 

from normal integrals for T=3 to be about .1% ?. and for T=5 less than lO'6?., 

In order to demonstrate the results consider the following example 

a a 2% (material density variation) 

e = 100% (a void over a whole pixel) 

n = 100 (number of independent detectors per scan) 

T = 5 (make P2<10"
6) 

2    -1 In this case U/cO    n      =25 and we obtain a 

P1   <   .08  •  exp(-25/4)  = 1.5  •   10"4 -   .15% 

Note, however, how quickly P, could increase when the void does not fill 

all of the pixel, but say only e = 20%! We remark that in this event 

the variance of Equation 2.70 could permit a better approximation. For this 

latter situation, the approach presented subsequently, namely a 

sequential probability ratio test, will be particularly useful. 

From above numerical example it may appear that error rates are not always 

low enough and it may appear desirable to reduce P-,, say by taking a 

second set of measurements, possibly by rotating the object by 45 degrees. 

However a new set of measurements is dependent on the previous set 

and thus we cannot strictly assume for p scans 

P-, < cP, 0<c<l  Vp > 1 (2.75) 
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Fortunately, there is evidence that for D<<n above aDoroximation is good. 

To illustrate this we discuss two considerations. 

First we may try an educated guess about the distribution of Q1 

when D scans are performed. The value y(p) corresponding to Eguation (2.67) 

is nresumably prooortional to p when p<<n. For example, in the derivation 

for y(2) in appendix A2.2 summation over terms of order n  have to be 

performed in proportion to the number of stripes, (there p=2), over laying 
_2 

a flaw. Provided all other summations over terms of order n  contain 

manv less than n terms, e.g. p<<n, they may remain small. This argument 

hinges of course on the assumption that terms corresponding to ts  of Equation 

2.50, for p>2, do not change much in their proportion when p changes. 

This again seems plausible when o<<n. 

A second interesting consideration is the observation of the 

determinant of z. . The square root of the determinant is comparable 

to volume in a space of random variables and is used for example as 

a scale for the Gaussian distribution. Compare now from Equation 2.50 how on 
.j*  -l  .k J«  (n-l) 

the one hand li, 2 o   = M2 depends on n, namely, \z  I 2 anK       '.    On the o   a b 

other hand, when all off diagonal elements are omitted, obviously 

k  n-k |E, I 2 an 2, showing it spans comparable volume despite neglect of these terms. 

Furthermore, when only a single scan is used, neglect of off diagonal 

elements in z', leading to f. does not change the determinant since il ^  is 

diagonal (only the left upper quadrant of Eu is used). Hence |^'t)|'
5 = \^\\  = 

nn' . This result is summarized in Table 2.5 for p=l and p=2 scans. It shows 

the exponent of |E| 
2 grows nearly proportional to p and omission of off- 

diagonal terms (= considering dependency of measurements) changes the determinant 

only by a small factor (compared to changes associated with changing n). This 
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observation is suggestive of similar behavior of these determinants for 

2 < p « n and is indicative of the usefulness of a stochastic model in which 

p independent scans (evenly distributed around the object) are taken. 

TABLE 2.5: Value of Determinants 

1 

2n-l 

2(n-l) 

From all these considerations, we expect the distribution of Q' 

to "spread" only slowly with p and to a first approximation we may use 

Q' ~ n(pn+pe
2a "V1, 4p e2a "2 n"1) (2.76) 

whenever 2ea  >> n and D<<n. It seems that in oractical situation 
a 

this is only true for rather homogeneous materials and large flaws. 

(If this condition is not satisfied the variance will be much smaller 

and better bounds on detection of a flaw based on the method is possible). 

In terms of a detection scheme based on the quantity Q1 one finds 

from elementary considerations (see Figure 2.10) the approximation 

P-|(D)<C
P
 = J_  ^a exp {-p (£

2
CT "V )/8} (l-c) 

• a 
/27 

=J^ ^a exp {-p e
2ab"

2/8}  (1-0 (2.77) 

in concordance with Equation (2.75). Observe how the product pe dominates 

error rates; this is a typical statistical phenomenon. 

These observations suggest to use,with some care,approximations 
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leading to suboptimal decision schemes. Most importantly, it was 

indicated how increasing the number of orojections can decrease error 

rates. The observation suggests to use more projections - possibly 

in a sequential fashion. Also for the purpose of the analytical 

treatment of a sequential problem, the structure of the problem has 

to be greatly simplified. Below we will discuss such a simplified 

approach which may have the robustness necessary to obtain a valid 

sequential approach. 

2.3.3 Simplified models 

A drastic simplification occurs when the correlation of measurements 

is neglected - at least as far as the use of their precision matrices 

are concerned. This is equivalent to considering only the marginal 

distributions of ID e.g. we assume 

n(b) = , p(b. ) (2.78) 
k  K 

Clearly the marginals carry less information and thus any scheme 

based on them will perform suboptimally. Conveniently, in this simplified 

model measurement error is easily incorporated. Measurement error 

may arise from quantum mottle due to the primary beam and mottle due 

to scatter; scatter would introduce also a bias but we assume for 

the time being to know that bias and correct for it. Thus measurements 

are characterized for a single scan by 

bk - N(Mk,a^) (2.79) 

when no flaw is present. When a flaw of fractional area e is present 

in, say, pixel (i,j) one of the elements of b^will change. For that 

element, say at location £, in vector b^ we obtain from Equation 2.12 
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b£~ N(u£ + e, a/) (2.80 

For o scans the joint distribution in the absence of a flaw may be 

written as 

P(br b2, •. bp) = i; 

^1 

^3 

^P 

'11 

'21 

'nl 

np. 

(2.81) 

The exponent 0 of p(b1 , b2, •. b ) is well described by 

[np,  np, (2.82) 

although the slight dependency of measurements will call for some 

2 
correction with small constants C (in dependence on a^ ), e.g., 

Q ~ N((l+C1)np, (1+C2)np). For the sake of simplicity of the analysis 

this small effect is neglected. 

On the other hand when a flaw is present we obtain approximations 

for the distribution of Q' somewhat different from Equation 2.70. Similar to 

Equation (2.67) we comoute the variance v due to the cross product between 

e and Xfb-jK This time however, due to using a diagonal matrix in (2.81). 

the contribution of rows corresponding to Equation (2.66) is limited to these 

2 
diagonal terms. One obtains immediately y = (2e/aJ for a single scan 

P       2 
and for p scans, y = E {2c/aP]/)   , in concordance with the approximation 

k=l 
Equation (2.67). 

'£k' 

The diagonal anproximation Equation (2.81) is motivated by the assumption 

of quantum mottle and the discussion following Equation (2.75). Here c 

expresses the noise due to material along the entire projection stripe 

2 
and will be of order no olus the quantum mottle which is possibly 

a 

of comparable magnitude. Hence we will use the approximation for Q' 

'jlk 
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Q' ~ N(np + E (e/a„, T, np) 
k.1     ^K 

(2.83) 

In other words this model neglects the product due to e and x by virtue 

of 4 z (E/O,-,) <<np. For simplicity we will assume a^. = a and obtain 
K— I 

for the presence of a single flaw 

I  (e/a.-,)' 
k=l    Kl 

(2.84) 

Equations (2.83) and (2.84) suggest that the problem may be approached 

analytically using the sequential probability ratio test (SPRT). 

■f" h 
From [11 ] define for the k  single scan. 

log 
Po(V 

log- 
exp(- $\) 

exD(-2 Qk) 
(2.85) 

where all z. have the same assumed distribution as Z, and form 
P 

s = z z.. Choose now the following constants 
i=l 1 

c      V1"^ 
a = log  s - log — 

f 

' e 

(2.86) 

b --log — + log [l c 

1-? 

Where c is the sampling (scanning cost), f the cost if a flaw is 

missed, and e  if a good object is rejected. The quantities 1^ and I-, 

are given by, (using Equations (2.81), (2.82) and (2.85)) for p=l scan 

2 
I0 = -E[Z|W=w0] 

E[Z|W=w1] 

(S) 
(2.87) 

Then decide dn(no flaw) when s ^ a and d, when s ^ b. If no decision 

is reached increase p by one (next scan). This procedure requires on 

the average (depending on w) 
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P0 = E[kl«=w0]   ...(f)       =    2(2)     10, f 

(f)2    =   2(f)
21og 

s (2.88) 
2 /    \2 

scans.    The Bayes risk p*(?)  is, with i = max(f,e)  bounded by 

X 1 O/CT\2        n        A 
P*(0  <c;  log    ^    ■    mJM/%    T  ,  = 2^ce  log ^ (2.89) 's   "3   cs        rnirUToTrj)   '   \ej   s -J cs 

For illustration consider a  nxn = 100x100 pixels area with 0    = 2%,  but 
a 

this time a single small void with say E = 10% only(!). Further 

2 
assume the quantum mottle and other measurement noise 0 to be comparable 

2      2 to the noise in the orojection, e.g. a = 100 a . The total noise terms in 3  m      a 
2 2 

the comoonents of the measurement vector b are thus 2 x o . The variance a  , — m kc 

in Equation (2.81) is then n x 2 x a = 800 (%) . For the cost 
m 

4 
structure assume the cost of a decision error  = 10 c and possibly 

c = 1$. Then the total risk per examination is 

p = 1$ x 4 In 10 x 2(|Y : $147.4 (2.90) 

Similarly the average number of scans is 147.4. Such a large 

number of scans is comparable to full tomographic scanning. 

If we had assumed e = 100%,as in the previous example, only 1.5 

scans would be suggested on the average. In this case, however, the 

model for lQ  and I, in Equation (2.87) is not valid anymore since 

2   2   2 
e >(naa + o ).     The SPRT suggested is limited to e = 28%. When largerehave to 

be considered Equation (2.87) has to be modified accordingly (crossterms leading 

to y of Equation (2.67) become dominant). For some further discussion of this 

examole see also Section 4.2 where a crack of fixed orientation 

relative to the object is assumed while the object may have any 

orientation.  In that case a drastic reduction of scans is possible. 

We should remark, when the structure of the object is simple and well 



known, the computational burden for implementing this procedure is 

trivial as the inversion problem has not to be solved. Only the 

forward problem - finding the projections of the object for any given 

scan direction has to be computed one time by solving an expression of the type 

b = Aa. 

An interesting question is now how the number of flaws could be 

determined. For a small number q of flaws, the number of possible 

arrangements is of the order of n q. Thus testing all of these 

arrangements is usually impossible. 

An alternative approach is based on the use of an expression (Equation 2.82), 

modified to account for multiple flaws. From analogy, for q flaws 

Q" ~ M(np + q E {z/o-)2,  np). (2.91) 

Thus the mean of Q" shifts q times faster with q flaws. This information 

can be used to estimate the number of flaws.  Hence 

P      o 
E[0" - no] /[ E (e/^.n = q (2.92) 

i-1 

and 

var q = np/ [z (e/a^]2  a    p"
1 (2.93) 

i^l 

Thus, depending on the desired precision of estimating q the number 

p of projections can be chosen. 

An alternative approach would be to observe the stopping time 

when decision d, caused stopping. Obviously, when there are more flaws 

one would expect a sequential sampling scheme to stop earlier - in fact - 

after p1 /q samples. A crude estimate of the number of flaws is 

therefore with p observed . the number of scans at termination, and d f  d0. 

q1 = E[k/W=w1 = single flaw]/ p observed (2.94) 
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One should be cautioned however when using estimate q1. The problem 

is that little is known about the distribution of p observed. Already 

the computation of E[p observeci] is a rather involved task - [Reference 11, section 

12] and little is known about its higher moments. Thus very little 

can be said about the distribution of q1 (with the exception of the 

case q >> E[k|W=w,]; in that case Equation 2.92 or 2.93 may be used). 

The location of flaws seems to require searches over all n 

pixels. Fortunately it is unnecessary to form compound hypothesis. 

One way is again to use expression of the type (Equation 2.91), and treat it in 

precisely the same way we had used Equation 2.82 and 2.83 (or 2.91 respectively); 

However, instead of assuming no flaw - we assume a single flaw. With 

this assumption we compare the quadratic forms corresponding to the 

2 
single flaw model on all n pixels. When a flaw is encountered Q'is 

P    ? 
expected to change by E[AQ'] = Ix E(e/a.) . In this way one can proceed 

i 
to search for the next flaw until q flaws are found. 

A oroblem with this approach is again uncertainty in the actual 

change AQ of 0 between hypothesis. From consideration of equt 2.69, 

with x Mx fixed (observed) 

var [AQ] = p ag2 var [2e xk] = 4p(e/CT )2 (2.95) 

which we require to be small compared to E^AQ] ~ [p (e/o ) ] . This 
a 

requirement will usually be met when p., close to p, = E[k|W=w-1] scans have 

been performed (since this provided enough information to detect 

a single flaw almost certainly.) The probability of error for the 

detection of each individual flaw is approximately, 

Pr [d0 [W-w^e
3 = (cs/f) ^  (jj (2.96) 
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_3 
For the example above Pr [dJW=w-|] -10  ?'/(l-c') which may 

be an acceotable level. Here <;' is the prior probability of a flaw 

-2 
on the particular location - so typically it will be n <;, leading to 

Prex[d0|W=w1] ~~10"7 £. 

If termination of scanning is a random variable and q >1 

suggesting that only few scans are performed - considerably larger error 

probabilities would result. For the same reasons mentioned for finding 

the properties of q' and the invalidity of approximation (Equation 2.96) in 

such a case, such simple estimation of error rates for locating flaws 

are not oossible.  In such a case one would also resort to some ranking 

statistics of the estimated probabilities, further complicating analysis. 

Some numerical studies (Monte Carlo methods) are suggested for evaluating 

this method. 

At this point we may begin to be interested in the evaluation of 

the noise terms from a physical point of view. Especially, we have 

realized that signal-to-noise ratio determines efforts of finding flaws. 

The basic physics and technology are now addressed to resolve some 

of the associated issues. Subsequently we will turn to aspects of 

optimizing system performance e.g. minimizing (er/e) . 
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3.  PHYSICAL ASPECTS OF PROBLEM 

The physical aspects of X-ray radiography can be divided into 

three major areas: (i) conversion of energy from high velocity 

(relativistic) electrons into X-ray energy; (ii) absorption and scattering 

of X-rays when trespassing matter; and (iii) detection of X-rays. This 

natural division into three areas corresoonds to a simple modeling of 

components in primitive X-ray radiograohic arrangement [Figure 3.1]. 

It will become clear later that such a strict association of physical 

mechanisms with systems components is not adequate. Instead, for more 

refined modeling, several ohysical mechanisms will have to be considered 

within each component. Since quantitative description of some of above 

mentioned areas is rather complicated it is clear that simultaneous 

consideration of these physical mechanisms will contain a considerable 

degree of uncertainty. How to cope with this uncertainty for the purpose 

of systems analysis will be described in subsequent Section 4 and 5 . 

This section will mainly address physical mechanisms and the relevant 

technology as it affects describing dominant physical meehanismsi it will 

indicate qualitatively the most important mechanisms to be 

considered in modeling systems components for a particular arrangement. 

3.1 X-ray Sources 

Depending on required mobility and intensity of X-ray sources 

either radioactive isotopes or tubes are used. Usually the X-ray 

intensity available in X-ray tubes is several orders of magnitude higher 

than in isotopes. Hence it often provides the X-ray source when 

stationary equipment is permissable. For the high speed NDE environment 
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X-ray 
source 

object 

h 

detector array 

detection 

Figure  3.1: Schematic of basic X-ray imaging components 

Figure 3.2: Vectorfields E and H, after time t-r/c, due to acceleration 
a^ of a positive charge at 0. 
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tubes apoear to be perferable, as will be shown, and hence we will 

mainly concentrate on their performance characteristics and devote only 

little time to radioactive isotopes. 

X-ray Tubes 

Since the discovery of X-rays the technology of dedicated X-ray 

tubes has undergone considerable development. For different applications 

X-ray tubes are tuned in different ways [References 5, 22, 32] and differ 

in: 

soectral properties 

range of anode voltage and current 

beam shape and intensity 

mode of operation - pulsed versus continuous 

focal spot size and shape 

stability of characteristics and life expectancy 

power suooly requirements (DC or radiofrequency for linear 
accelerators) 

mechanical robustness 

anode material (Tungsten, Molybdenum, Silver, etc) 

stationery vs. rotating anode 

anode cooling(radiative vs. fluid cooling) 

production of scattered electrons (which generate X-rays in areas 
other than the focal spot) 

control of electron beam geometry (due to filament aging, space charge) 

cost 

Some of the basic considerations which lead to the variety of tubes in 

use today will now be given. 

The earliest theory about the generation of X-rays is based on the 
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concept developed by JJ. Thompson and Lorentz; this theory is based on 

Maxwell's electrodynamics [Reference 8, Chapter 2]. According to this 

theory an electron which is accelerated (or decelerated) radiates a 

transverse electromagnetic wave (Figure 3.2). The electric field 

E at distance r from an electron after a time r/c is given by 

# _ a e      sin 9  /o -n 
t - 2 3 l-j• U 

re   (1 - g COS e) 

where a is the acceleration (or deceleration) of the electron with 

relativistic speed v = 3c (0^ 3< 1), c the speed of light in vacuum, 

and e the (negative) electron charge. The magnetic field H has an 

intensity proportional to the intensity of E with the direction 

indicated in Figure (3.2). Thus, by use of Poynting's vector S 

[Reference 46] the flow of energy is given by 

S = E x ti (3.2) 

From these expressions it is apparent that roughly speaking 

(assume e << 1), "Bremsstrahlung" will occur in a direction perpendicular 

to the electron beam incident on the anode. If B is not much smaller 

than unity the beam intensity in the forward direction ( cos Q >  0) will 

be larger than in the backward direction. 

Modeling X-ray Beams 

One might further suspect X-rays to be polarized in a plane 

passing through the vector "a. (Equation 3.1). However, when electrons hit a target 

material deviations from this simple theory occurs: the electron is 

not decelerated instantaneously but propagates within the anode material 

along some random trajectory. Furthermore one has according to de 

Broglie to consider the wave nature of electrons which constitute 

wavelets with length comparable to internuclear distances. A 

description of these relativistic quantum mechanical mechanisms were 
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given by Sommerfeld (1929) and are in reasonable accord with results on thin 

targets [Reference 27]; interesting is the observation of hard X-rays (most 

penetrating being highly polarized while lower energy components of the X-ray spectrum 

are not [Table 3.1]. We note at this point the relation between the shortest observed 

wavelength X^ in a spectrum generated by the tube with voltage U, as a conse- 

quence of quantum mechanics, is determined by [Reference 32] 

Amin[^ £ 12-3 U[kV] (3.3) 

Typical X-ray spectra are depicted in Figure 3.3 and show maximal intensity 

in a band dA at 3/2 A^. For a given supply voltage the intensity of the 

spectrum may be approximated by an expression of the type 

1   K  1 1(A) cZ ( 
Xmin ■1) A 

U(A-A . ) 
mm' (3.4) 

by use of [Reference 8, p. 105] and dv =-cdA/A . When it is desired to account also 

for characteristic spectral lines at wavelength A. and partial absorption of X-rays 
J 

in the taraet. a more general model of the type 

. 6(A-A.) 
J 

(3.5) 

where 6{.) is Dirac's delta function and p > 2 may be used. 

From earlier discussion it might also be desirable to model partial 

polarization of X-rays at high energy. Excluding the unpolarized fluorescent 

lines in the spectrum, this may again be accomplished by functions of the 

- YA 
type e  . In a simple case such as with Kulenkampf's thin foil [Reference 8, his 

Figure 11-20], the two 

Table 3.1 

THEORETICAL POLARIZATION OF THE CONTINUOUS RADIATION 

Frequency   | Percent Polarization 

V = V 
max 100 

V = 3/4v 
max 82 

V = l/2v 
max 57 

V = l/4v 
max 24 

From [42]. 
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A[A] 
.6 .7 .8 .9 1.0 

Figure  3.3: Schematic of typical X-ray intensities I as function 
A 

of X and tube voltage (Tungsten target, after [ 8, p 38]) 

anode 

electron 
beam 

]  X-ray 
beam swaying 

f 

collimator 

Figure 3,4: Problem of beam swaying due to wobble of target anode. 
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components may be approximated by 

I^Cx) - c-e ^(x";STiin) 1(A) 

Mx) = (1-c-e "Y(x"xmin) I (x) 

0 < c < 1 

(3.6) 

Following Comoton [Reference 8, p95, pill, pi 12] c would have to lie between 

zero and unity. Further difficulties in describing X-ray intensity 

arise from consideration of soatial distribution. Equation (3.1) 

expresses already a dependency of X-ray intensity on spatial direction, 

but there is an additional effect called the heel effect. This effect 

arises in the following way: X-rays are generated in good part at 

some depth in the target material. Hence, depending on the direction 

in which they leave the target they have to trespass different 

distances of the target material and are filtered differently. Thus, 

not only will the intensity change in dependence on direction e but 

also in dependence on the direction ^ [Figure 3.6]. Presumably these variations 

will be slow functions of $  and e. With this assumption and from 

symmetry around 4,= 0 we may use as an approximation for I(x) 

l(x,e,$) = i0(x) {1 
0-0o' T ^g 0" "0- G0' 

- (j)  - .0 h^ .   *   - 

(3.7) 

in some neighborhood of 0=0O and $= 0. Sommerfeld, as cited by 

Comoton [Reference 8, p 114] (neglecting heel affect), suggests that near X 

the angle of maximum emmision 0O should satisfy the differential 

equation 

mm 

sin  9, 

d0e  (l-6cos 0n)
4 

0; (3.8) 

55 



Figure 3.5: Example of oossible focal spot X-ray intensity, viewed 
face on through the pencil beam collimator of Figure 3.4. 
(after [Reference 5]). 

incident 
electron 
beam 

Figure 3.6: In a fan beam geometry the apparent focal soot shaoe 
depends on viewing direction 
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For small g, e- is approximated by 

^min) = arccos 2f (3.9) 

For X>Xmin it is found experimentally and theoretically [Reference 

8, P- 115] that for maximum X-ray intensity e0(x) <9n(x • ).  For 

illustration, for 6= .25 ( =16.5kV, xmin=.75A) 0O =60° . As far as 

gCx) and presumably hCx) are concerned, it appears from Compton's data 

(his Figure 11-11) that they are not strong functions of x. 

Another important variable in describing X-ray intensity is the 

anode voltage. Understanding its effect on the X-ray spectrum is 

important because slight variations of hardness may result in large 

variations of intensity of X-rays trespassing an object. Two 

references addressing this issue are Reference [5] and [22]. Kramers Reference 

[26] finds also as a description of anode performance as a function of supply 

voltage in relatively good accord with experimentation for the 

efficiency n of X-ray generation 

4Tr 

3/31 ore3   z-u^0"6zV] (3.10) 

m e 

e.. 

I.. 

z.. 

h.. 

c.. 

. mass of electrons 

. electron charge 

. numerical factor of about 6 

. atomic number 

. Planck's constant 

. speed of light in vacuum 

Thus for Tungsten target (Z=74) and U-lOOkV an efficiency of about .75% 
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is found. In concordance [Reference 32] gives a quadratic relation for the 

intensity of the continuous spectrum to tube voltage U: 

2 
I = k IT 

McGonnagl describes futhermore that the maximum of the intensity in 

X-ray spectra (from tubes) occurs at about 1.5x . corresponding to 

2/3 of the supply voltage. These relationships suggest for the 

dependency of L(x) on U, at the high frequency end (where most power 
A 

is concentrated (under the condition of constant supply current of the 

tube)fora band of width dx (Appendix 3.1) 

VX.U)- (y\(X- ^) (3.11) 

and for the quantum count density S in dx 

When anode power P, is limited, e.g., anode current is qiven by a 

I = P./U, S is reduced in such a way that jAppendix 3.2] 

/ S(x,U,Pa)dx = S0(Pa) (3.13) 
Xmin 

This is an important relation which suggest that for power limited 

anodes only the fraction of X-rays penetrating an object can be 

controlled via U but not the incident flux of photons. 

With regard to the tails in models for spectra (Equation 3.4) it 

should be said that Equation 311 is compatible with the observation that tails 

of X-ray spectra do not cross for different supply voltages [Figure 3.3], while 

other models would not necessarily satisfy this observation. 
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With regard to modeling the dependency of characteristic spectral 

lines on U we refer to Comoton [Reference 8] who suggests from experimental evidence 

b.~(U/U0)
n in Equation (3.5). 

Heat Dissipation and Power Supply of X-ray Tubes 

Below supply voltages of several MV most of the kinetic energy of the 

electron beam is converted into heat and only a small fraction into 

X-rays. Thus heat dissioation limits often X-ray output. Two 

methods are used to allow high local heat dissipation. One is to cool 

the anode material locally, for example with oil or water. Alternatively 

the electron beam is moved relative to the anode; this is accomplished 

either by rotating the anode with up to 10,000 rpm or in a technique 

currently under development [ Reference 5] by guiding the electron beam over a 

large anode which encircles the target. The advantage of these latter 

techniques is the small permissible focal spot size with a relatively 

high power density; the disadvantages are either a rather limited 

total power dissipation (rotating anode) or high equipment cost and 

difficulties with electron beam stearing (moving beam). 

A few words should be said about the power supply.  In high 

quality imaging systems it is desired to use DC supply voltage with 

littel ripple (constant beam hardness). For high power outputs 

(pulsed up to lOOkW) it is obtained from 3 or 6-phase systems. 

Additional electronic equipment controls supply voltage to within a 

fraction of a percent. Residual voltage fluctuations will usually 

contain some harmonics of the line voltage and possibly some flicker 
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noise due to electronic equipment. 

In order to minimize detector noise (Section 3.4) and motion 

artifacts, the production of X-rays is often pulsed. Pulse duration 

is limited for a given flash energy by maximal cathode filament 

current, space charge, and heat storage of target material and lies for 

typical CT-scanners (GE 8800) between 1 and 12 msec. Note that for 

an anode rotating with 10000 RPM heat will be deposited on a 60° 

sector for a 1msec pulse. If these pulses do not occur in certain 

even intervals - so as to heat the anode evenly - the anode will warp 

due to uneven heat deposition [Reference 5]. In conjunction with collimation 

this may lead to beam swaying [Figure 3.3]. Furthermore, anode wear will be 

uneven and the anode will develop microcracks. 

All of these effects will lead to periodic variations of the X-ray 

output. Braun [Reference 5] holds these mechanisms responsible for severe 

artifacts in fourth generation CT-scanners. Note that probably 

intensity and beam hardness vary as the angle of incidence of electron 

changes (compare Equation 3.1 and 3.7). 

As a final characteristic of X-ray tubes one should consider focal 

spot size. Often the intensity of the focal spot is bimodal - possibly 

as shown in Figure 3.5. In case of fan beams it is also clear that the 

effective spot geometry will change in dependence on the direction within 

the fan beam [Figure 3.6]. In closing it should be pointed out that 

for the very high energy X-ray range (MV) linear accelerators and 

Betatrons are necessary. They use either RF linear arrays of electric fields, 

or magnetic fields with circular symmetry. In application to thick 

objects they are essential. 
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In retrospect many mechanisms contribute to uncertainty and hence 

noise in the test signal - the X-ray beam. The uncertainty concerns 

spectral composition, directional variations and uncertainty about 

the precise olace of origin of an X-ray photon. Since signal-to-noise 

ratio limits acquisition of information the understanding of these 

noise mechanisms is important. 

Radioactive isotopes 

Radioactive isotopes produce in most application much less 

intensity than X-ray tubes. Acitivties of isotopes is measured in 

Curie-units. One Ci corresponds to 3,7 • 10  decays/sec. From typical 

values of such sources we find a production of between 10  and 10 

rays/sec. 

halflife activity/ci spot size -quanta 

-  137 

MeV 

Cs ■ 30a .5 3x3 .662 

Co ■ -  60 5.26a 2 2 x 2 1.17,  1.33 

Ir ■ -  192 74d 25 2x2 .296,   .308, 
.468,   .605 

.316 

Table 3.2 after Glocker, [Reference 15, p 33-35] 

For comparison a rotating anode tube at lOOkV will produce 

within a 1msec pulse of .1A (typically they go up to .5A) in excess 

12 
of 10  photons.     This implies the potential of performing NDE 

via tubes some four orders of magnitude faster than with any radioisotope. 

It will be shown later that this potential can usually be fully 

exploited by current detectors [section3.4]. 

An attractive feature of above radioactive isotopes (Table 3.2) is their 

short-term, say on a minute basis, stability and their simple and stable 

spectrum. Despite this apparent advantage it appears doubtful at the 

current time whether, or under what circumstances, performance superior 
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to that with X-ray tubes could be achieved. 

3.2 Properties of X-rays Absorption and Secondary Radiation 

When X-rays travel through matter their intensity decreases due 

to absorption, and scatter (and above 1.02 MeV pair production). The 

relation of the decline of intensity of a monochromatic X-ray beam 

passing through an object is well know to follow 

I(x) = I0(x) • e 
■ypx (3.14) 

where y = y(x)is the attenuation coefficient and p the specific 

density. The coefficient p is composed of absorption x and scatter a 

([Reference 15, p38]) 

y = T + a (3.15) 

and is dependent on wavelength x and chemical composition of the object. 

For an object with fractions a. of atoms species i the absorption is 

given by 

P z 
i 

(3.16) 

Some typical values for y/p for carbon, aluminum, silver and lead are 

given in Table 3.3. 

Table 3.3 Specific Absorption y/p after McGonnagle Reference 32]; values are in 
[cm2/g]. 

u X/A C A£ 
equiv 

lOOkV .12 .151 .168 

41 kV .3 .206 .55 
24.67 .5 .325 1.92 

17.37 .71 .61 5.22 

12.3 1.00 1.37 14.1 

Ag Pb 

1.36 5.15 
17.5 13.6 
9.7 55 

28 140 
73 77 
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Note that attenuation coefficients do not necessarily decrease 

monotonically with wavelength. This is particularly striking for heavy 

elements such as Ag and Pb and is a result of the so called absorption 

edges arising due to K, L, M etc shells of the atom (Figure 3.7). For 

light elements such as C (e.g. Z=29, below Cu) the high energy K- edges 

are at energies below 12 kV. 

For us it is important to express y and its components x and 

a  as functions of x algebraically. The expressions found by 

Compton [Reference 3] for t are useful. He finds, for the photoelectric 

absorption depending on the particular absorption mechanism involved 

(K shell, L,, I,,, LTTT» etc are involved) for wavelength shorter 

than a particular absorption edge 

T a X01 Zn (3.17) 

where m = 3...4.5 and n = 3...7.5. The dominant mechanism however 

result in a x where m -3.5 and n -4.5. 

For energies above 60kV Cho[Reference 6, p45] suggest a relation of the type 

T = kf(x) • Z (3.18) 

and for still higher energies, say in the MV range, 

Vir = kiz2ln r   " k2 (3-19) m C 
e 

As to the mechanisms of X-ray interaction Compton [Reference 8] realized 

that with increasing X=ray energy X-rays are not necessarily completely 

absorbed when ejecting an electron.  Instead their energy is diminished 

and in relation to their new direction of propagation, eject a 

low energy Compton electron.   The change of energy obeys the uncertainty 

63 
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40 
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>        r 

.2 .6   .8    1.0 
^ [A] 

Figure  3.7: Schematic of K-absorption edge of Ag; after [Reference 15] 

/ scattered 
/*  X-ray 

•- x 

Figure 3.8: Notation used for J.J. Thomson's scattering model; 
after [Reference 8, p 117] 
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principle and hence the scattered radiation is incoherent. 

The production of Compton scattered, incoherent, (or sometimes 

called modified) radiation can thus be related to the absorption  by 

use of data regarding the relative production of photo electrons 

(complete absorption of X-ray) to the production of Compton Electrons. 

Such data is provided by Glocker [Reference 15] and shown for Water. [Table 3.4] 

An extra column expressed the ratio of the number of Compton scattered 

X-rays to photo absorbed X-rays. For still higher energies refer to Table 3.5. 

Here pair production [an electron and positron are genereted] becomes 

important and eventually dominates Compton scattering. 

These observations have some important consequences 

(consider Table 3.4). Roughly, when an object absorbs a fraction 

of X-rays (which seems to be desirable - otherwise no projections of 

the object would arise) the number of scattered X-rays must be 

proportional to N /N , times that fraction. Thus, when the absorbed 

fraction is large and the energy of primary X-rays is high, say 100 keV, almost 

all of the X-rays eventually leaving the object are scattered X-rays! 

The pair oroduction mechanisms seems to work in the reverse 

way [Table3.5]. When the primary X-ray exceeds 1.02 MeV (a>2, compare Equation 3.30) 

it has a chance to generate an electron-positron pair of 1.02 MeV energy. 

The residual X-ray energy is thus 1.02 MeV smaller than that of the primary 

X-ray. This lower energy X-ray may have much less penetration than a 

primary X-ray and may disappear in a likely second interaction. However, from 

able 3.5 it is seen that for energies slightly above 1.02 MeV only few X-rays 

are affected by this mechanism. Note, for still higher energy X-rays where 

a larger fraction of X-rays is affected by pair production of secondary 

X-rays the hardness of secondary X-rays comes close to that of the nrimary X-rays. 
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TABLE 3.4 Relation of number of photo absorbed and Compton scattered 
X-rays; E . . and E  . refer t 7   phot    compt 
electrons. After [Reference 15] 

X-rays; E , . and E   , refer to the energy of respective 

X[A] hyCkeV] % Ephot^ % w^ w 
.809 15.3 99.6 14.8 .4 .87 .07 

.404 30.7 98.7 30.2 6.3 3.3 .62 

.202 61.4 52.4 60.9 47.3 11.9 4.65 

.101 122.8 8.4 122.3 91.6 39.7 33.59 

TABLE 3.5 Relation of pair production [requires a>2] to Compton scattering 
of X-rays. After [Reference 15] 

X[A] hY(MeV] % E [MeV] comp % Epair[MeV] Np/Nc 

.0124 1 100 .8 0 - 0 

.0025 5 90 4.8 10 4 .13 

.0012 10 73 9.8 27 9 .40 

.0006 20 50 19.7 50 19 1.09 

.00025 50 26 49.8 74 49 2.89 
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3.3 Scattering of X-rays 

The simplest model for scattering of X-rays can be approached 

by J.J. Thomsons model of accelerated charges. Thus, the electric 

field of an incident X-ray accelarates an electron which in  turn 

radiates a counterohase electromagnetic wave.  In this model the 

radiated field has the same frequency (=coherent) as the incident X-ray. 

The electric field of radiation from a polarized X-ray is given by 

E  = Leisine (3_20) 

r m c e 

(Compton, [Reference 8]) with circular symmetry around Y axis [Figure 3.8] 

The ratio of the intensities of the incident and scattered ray is 

given by 

4      2              T            4 Inw       e sin ey Ip. _   e  ,        . 

I r^m c4 I r m c 

and for unpolarized X-rays 

T P4 9 

1 2rVc4 

[Reference 8].    For n independently scattering electrons  (light 

elements) the fraction of primary energy scattered per unit length 

of oath follows, [8] for n electrons 

4 
8IT ne 

CT _    —2—4 
3 m^ c^ 

(3.23) 

2 
Under these conditions it can be shown that a/p ~ .2 cm /g 

independent of the wavelength. 
o 

In the raqne of .2 to ...1A this theory gives within a factor of 
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1.5 the correct value of scattering for Carbon (Z=6). For heavier atoms 

scattering increases with Z fairly linearly including iron {1=26)  and 

more than proportional for heavier atoms [Reference 8, his Figure III-3]. 

There are further deviations from this theory Equation (3.23). One concerns 

the deviation of the scattered intensity as a function of scattering 

angle from that predicted by Thomsons Theory. For example for 
o 

mesitylene (liquid) [CgH^CH-^] at \ =  .71A a peak of the scattered 

intensity at e= 10° some 10 times that predicted theoretically is 

observed. This peak is due to the small phase difference between 

different atoms (with their associated electrons). More formally 

for polyatomic structures scattering (coherent scattering) is given by 

Debyes formula [deference 8] 

P  P      sin xm^ 
I = I E  E F F   —^ (3.24) 
c    1  1  m n   xmn 

where in turn 

x  =4^ Smn sin U/\) (3.25) mn     —     \Y / 
A 

with s  the distance from the m  to the n h atom. The quantity F 
mn m 

is the atomic structure factor of the m  atom and F is 

F = i f. =  z   / u (a) ^^ da , (3.26) 
j  J   k=l 0 

determined by the potentials uk of its z electrons (the potential of 

the nuclei are neglected since their mass is very large and hence they 

cannot strongly radiate). These structure factors are tabulated in the 

International Tables of X-rays [Reference 20]. Note that with increasing beam 

hardness (x+O) the maximal amplitude of scattered radiation must decline 

like 1/X by virtue of Equations 3.25 and 3.24 respectively. 
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As mentioned before in addition to coherent scattering, Compton 

found an incoherently scattered X-ray component. The effect is due to 

the impulse of the X-ray photon hv/c = h/x which causes scattering 

electrons to recoil. Thus scattered X-rays have lower energy. The 

relation is expressed, for a scattering angle tj), by 

6Xnh= -O242 0 " cos*) (3-27) 

Considering the associated recoil factor R 

R = 1/[1 +|^ 0 " cos*)]3 (3.28) 

according to Breit and Dirac (as cited by [Reference 3]) the total scattering 

by a molecule is I =1 + I. 7 m   c   i 

Z 

I = lJE E F F  S1n xmn + R E (z - z f2.)> m  0)m m  m n        v m  . , mjM  K        ' 
( xmn       m     J=1 

Again this expression shows a reduction of scattering with increasing 

beam energy. 

Above expression are only concerned with total scattering. For 

our purposes it is also important to understand the directional dependency 

of scattering intensity. A simplified model for this process is the 

free electron. Klein and Nishina [Reference 25] and Nishina [Reference 33] investigate 

for this case, based on Diracs relativistic quantum mechanics, intensity 

and polarization of scattered radiation. They find for a polarized 

beam with the notation shown in Figure 3.9 

i-^-f^z 77™—^i d^ 'yW e    sii 

0m2ec
4r2  (1 +a(l-cose))J V  ^ 2sin2 (U a(l-cose)h 

_ hv 
a - —o 

3.30 

mc 

G9 



incident 
X-ray 

scattered 
X-ray 

Figure 3.9: Notation used by Klein and Nishina [Reference 25,33] to describe intensity 
of scatter. For an unpolarized incident beam one has to average 
over all values of &;  this can be done by use of the relation 
cos (-d1) = sin{e) cos {&)  from spherical trigonometry. 
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For unpolarized radiation, averaging over v1 with cos i?1 = sine cos 6, 

leads to [ 3.31 

r  _ T  e4   1 + cos e       (n   2 (1 - cose)2 1 ~ ^ "TXT  ~—~~~~~~~~'—T I ' + a   7————  u mccn (1 + o(l - cose}}  \     (1 + cose) (1 + a(l - cose)); 

Note the leading term due to Thomson theory (cc+O). Tables 3.6, 3.7 and 3.8 

show the functional behavior of these expressions. Note, in the 

forward direction (e->0) Thomsons theory describe scattering well. These 

-5   2 expressions suggest scattering of X-rays in the order of 10 /deg 
2 

and per g/cm . 

Above derivations are only valid for objects with negligible 

secondary scatter and constant intensity of trespassing radiation. 

Thus the volume element for which the analysis is valid must have 

dimensions small compared to l/x and l/o . For larger objects higher 

order scattering and the changing intensity of trespassing X-rays must 

be considered. The analytical complexity of the problem is considerable, 

even where simplifying assumptions such as the scattering on electron 

gas [Reference 25, 33] are made. Some efforts to solve the problem numerically 

have been made by [Reference 12] (personal communication) based on Monte Carlo 

methods. However this approach neglects polarization. Some of the 

difficulties lie in finding the proper relative occurence of different 

mechanisms (absorotion, modified scattering, unmodified scattering) 

independence on wavelength. Nevertheless he claims to obtain good 

estimates of scattered radiation when comparison is made with 

experimental data. One of the shortcomings of his method is the high 

computational effort necessary to find good approximations. 

In summary, the modeling of absorption of X-rays (which usually incuces 

the"signal")is relatively straight forward while that of scattering 
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(which will mainly generate noise) is rather complicated and in itself 

contains much uncertainties (many approximations). Some approaches 

to describe the quality of scattered radiation is discussed in Section 4.2, 

3.4 Measurement of X-rays 

Measurement of X-rays is limited in several ways. Perfect 

measurement would imply knowledge of X-ray energy, direction of 

propagation and polarization. However in most applications the X-ray 

detector notes the occurence of an X-ray and in some special situation 

estimates energy content. Measurement of direction and polarization 

requires additional devices. In practice additional uncertainty 

arises because not all X-rays are detected and several mechanisms 

distort estimates. 

Since our current investigation is concerned with high speed 

(real time) data acquisition and processing we discuss only detectors 

with electronic output. Regardless of the particular technology 

utilized the block diagram of Figure 3.10 can be used to describe 

most detectors - such as a Photomultiplier, Proportional counter 

Scintillation detector or other device. 
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Following this schematic we will discuss the effects of the individual 

components. 

1. The first component in the schematic expresses an energy 

dependent response probability for X-rays. Thus, given an 

X-ray has passed the detector a response of strength E will occur 

with probability n(E).   Typical values for n with E ~60keV 

are between 30% for (Xe - pressurized system by GE and 100% for 

Nal(Tl) scintilattion detector. For fixed geometry there is 

a strong dependency of n on E, as shown in Figure 3.10. One way 

to increase efficiency n is to increase the size of the 

detector and(pressure in case of a gas detector). Note, that 

in some instances the conversion of X-ray photon energy into 

signal can occur in stages (e.g. by diminishing X-ray 

energy in two stages) leading to an "escape peak" in photon 

statistics [Reference 22]. In some situations the secondary response 

can be suppressed. 

2. The actual conversion of X-ray photon energy into another form of energy may 

exhibit a nonlinear relationship (Figure 8, p3-3 of [Reference 22]) 

3. Often a conversion of X-rays into another form of energy is 

associated with a change of the number of "particles" such 

as photons, ions, or electrons representing the original X-ray. 

Often the relation is not given by a fixed ratio x; instead 

the number of generated particles x follow some probability law 

and this adds noise. When however    E[x]»l the noise of the total 

detector, will be nearly that of quantum mottle only [Appendix A3.3]. 

4. Thermal agitation occurs in many detectors. Its presence and 

the oresence of the background radiation are the motivation to 
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take measurements over short time intervals so as to avoid 

their cumulative effect.  In detector arrays 

where analog-to-digital conversion requires a significant 

amount of time those detectors with the weakest signal should 

be measured first - as is done in the GE-8800 where the 

detectors in the center are sampled first. The thermal 

agitation (flicker and Johnson noise) manifests itself as 

a drift of the signal. 

Conversion of X-ray energy into some other form of energy is 

often associated with dynamics which lead to a refractory 

time. Thus, during this time another X-ray photon induces 

either no or a reduced response. The result is an apparent 

nonlinear relationship between photon flux and signal. Good 

detectors have a refractory period in the y-sec range. We 

remark that an approximation to this nonlinear behavior 

(superposition principle fails) could be done in terms of 

Wiener kernels h (T,.to ■••T ).    The total system response 

would be approximated by a truncated expansion [Reference 29] 

S (t) = i   LJ^S   h^ (t-x.) S (t-T?)...S (t-Tjdx (33^ g    1=0  i times  r^x   I  x   z   x   n - KJ.JC) 

where S represents the train of incident X-rays and S the output signal 

Truncation of the expansion would here be determined by the 

probability of more than n events falling within the refractory 

period. 

A few more words should be said about the oossibility 

of the detector to resolve energy E of X-ray quanta. As 

mentioned a number of secondary "particles" may be released by incident 
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X-ray ohoton. Let us assume this number n   is proportional 

to E = hv. As shown in the Aopendix A3.5 thi: 

soectral resolution AV (+ 2a - channel width) 

to E = hv. As shown in the Aopendix A3.5 this number n   determines r sec 

/i  -h (3.33) Av = 4v n * K        ' sec 

Hence, from data in [Section 3-11 of Reference 22] for n pr
=250 x .2 =50, when 

Na I(T1) @ 8keV is used, a relative bandwidth of — = 55% is with 

4o/o [Section 3-29, Reference 22] of comparable magnitude. 

This statement does however not imply that estimation of 

the X-ray spectrum is limited to this value. The statement 

concerns only the blurr with which the spectrum is seen by the 

detector and "de-blurring" is possible by deconvolution. 

However, what is gained in resolution in terms of v is lost 

in terms of accuracy of I(v) - no information can be gained by 

"deblurring". 

From these considerations it becomes clear that information 

acquisition about I(v) is limited by the spectral resolution 

of the detector. Since most of the energy in tube generated 

X-rays and those eminatinq from an object (including the 

scattered rediation) lie within a factor of 2(corresponding to 

s3 channels) it appears that spectral estimation will not bring very 

valuable information for void and crack like flaw detection. 

In case of a monochromatic spectrum from a radioactive 

source some improvement of signal to noise ratio seems 

possible. Recall the effect of Compton scatter of Equation 3.27 and 

assume on isotope source with about 1.2 MeV. A 25% channel 

width translates into the selection of a scattering angle of 
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26°. When multiple scattering is of significance, such as 

in almost any material of a few centimeter width some 

improvement of estimation of spatial properties of an object 

may be possible. Note that detector materials other than 

Na I(T1) (possible CsI(Na), [Reference 39]) have to be used for this purpose. 

At least, however, by use of energy selective channels, one can 

discriminate against omni-present high energy background 

radiation which could manifest itself as large noise otherwise. 
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4. STRUCTURAL MODELING 

In this section we investigate the oossibilities to model the 

nerformance of an X-ray flaw detection scheme. There is a tremendous 

freedom to the nossibilities of design  for the range of different 

materials. No closed form aooroach as in the previous sections is 

oossible.  Instead, some approaches, some general concepts and oossihilities 

are presented. 

For the purpose of flaw detection a separation into three major 

areas is useful. First we address the possibilities of modeling objects 

in order to use prior information about them. Next we consider the 

oossibilities to model the nrojection process in the presence of 

quantum mottle and scatter for several beam geometries. Finally we 

analyze signal-to-noise ratio and how it may be ootimized. 

4.1 Modeling of Object 

The main purpose of modeling the object is to find what projection 

one has to exnect from a scan e.g. it is desired to model the mean for 

any particular scan. This problem is considerably simpler than the 

inversion problem.  If a good job can be done on this part much of the 

comoutational effort associated with image reconstruction can be 

avoided.  It might even be possible to obtain nerformance suoerior 

to CT as far as flaw detection and location is concerned because the 

projection oroblem may be solved incorporating more of the physical 

phenomena. 

A planar object may be described by its density n(x,y). This density 

may be factored into the product n(x,y)=nn(x,y) n-,(x,y) n?(x,y). Here nn 

represents the shape and average density of the object, n-, the random density 

variation due to variation in chemical composition and micropores, and n« the 

0-1 function representing voids of area e or cracks of lenthg A and width 6. 
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The component na(x,y) calls for some more discussion. 

For examole, machined holes may be shifted or weavings may be distorted 

locally leading to kinks and bows (Figure4.1). In this situation, as 

far as orior information is concerned one has usually an idea about 

the number of holes in an object and also the number and extent of 

permissible kinks and bows. Such location errors could easily be 

estimated from orojections - provided they are few and do not belong to 

unobservable patterns. In some objects theremay also be a systematic 

change of density with location - for example material density in a 

round object may increase towards the surface. For the modeling of 

these density variations of material low order polynomials or, when a 

large number of objects for training are available, Karhunen - Loeve 

expansion might be used [deference 13]. In any event it appears that the projections 

of these deviations could easily be modeled, e.g. by low order polynomials 

or simole patterns. We give now some examples how this might be done. 

Consider first a radial density variation of a solid cylinder. For 

example a simple radial density variation of a crossection orthogonal 

to the axis could be given by 

n0(x,y) = 1 + 

IT  r x c 0 X 2    2      2 
, x +y < r 

y 0 c y 
(4.1) 

A more complicated relationshin would be 

-i T  n. 

n'0(x,y) = 1 +f' 

i^-j 

(4.2) 

where f(-) is some suitable polynomial. This polynomial may 

however contain some variations in its coefficients from one cylinder 

to the next. The affect of these variations on the projections are 

easily comouted - at least when no scatter is present. This will 

permit one to select some set of polynomials - possibly of the Pade 

83 



kink 

Figure 4.1: Deviation of density n0(x,y) from ideal density due 
to kink of matrix. 

standard pixel refined pixel 

\ -.;:   'V 
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1  1 
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-educed "crack-like 
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total opening - 11° 
effective, half opening = 6° 

Figure 4.2: Crack-like pixel with effective opening angle of about 6°, 
These slender pixels have, conceptually, to point to the 
dectecor array. 
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tyoe - which in a few parameters (coefficients) give good approximations 

for the range of possible projections. These few coefficients are then 

estimated for each scan individually by weighted(depending on quantum 

mottle) least squares from the raw projiection data ID'. The 

numerical efforts for doing this are usually small. Then the resultant 

polynomial is subtracted from b' and the difference would provide the input b^ for 

the estimation orocedures discussed in Section 2.3. We remark, that 

adjusting for deviation of locations of holes (misalignment) is also 

easily treated by least squares. 

Some care has to be taken though for several reasons. First, the 

distribution of the quadratic forms in Section 2 will be changed. Typically 

E(0) and E(O') (and similarly their variance) will be decreased by an 

amount proportional to the number of coefficients used in the polynomial 

representation. This has to be considered in the development of the 

flaw detection algorithm. 

Second, the number of these coefficients should be kept small. 

Several methods exist to perform a data dependent selection of a good number 

of coefficients. Among the most prominent are Akaike's [Reference 2] AIC and 

Schwarz's [Reference 38] asymptotic Bayes approach. 

Third, these polynomials should not be able to remove the effect 

of flaws, at least not for all scans considered. The problem is 

closely related to signal transmission through bandpass filters 

Statistical concepts [Reference 45] are again very useful to study this. 

Here, no particular problem is anticipated, since cracks and voids have a 

rather distinct character from other material density variations such 

as kinks, bows and low order polynomials. 

A few more remarks should be made about the random density 

variations n (x,y) of an object. Usually there will be a region over 

which the density variation takes place. In other words points very 
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closely together will show typically a positive correlation of their 

densities while farther apart the correlation will diminish. 

When pixels of the size of these regions are chosen they may be 

regarded as uncorrelated and hence justify the models discussed in 

2 
Section 2.3. As far as the variance a, of the absorption of these a 

2 
pixels is concerned - it is proportional to the area A (volume) of 

2 
the individual n pixels. However, as far as the value a    relative to 

a 

the mean absorption y, is concerned it is inversely proportional to A,e.g. a 

a        1 

~  a    A   a   " ^•3^ 

From the results in Section 2.3 it becomes clear that best void 

detection is accomplished when the size of a pixel coincides precisely 

with the size of a void. This is a pleasing result since it allows to 

optimize performance for a given size of voids. In a sense this result 

may also be viewed as a primitive form of modeling, and as is usually 

the case, modelling improves performance in signal detection. 

This observation suggest also another aspect: could it be useful 

to use oixels shaped like cracks (of unknown orientation) or possible 

a series of cracks? Without going into detials of the argumentation - 

the advantage of doing so can only be fully realized when scans could 

accumulate information over all projections (range ir/Z) of the crack before 

arriving at a decision. 

For the example given and with the use of a sequential probability 

ratio test (E = 10% for a retangular pixel in Section 2.3.4), an array 

of 10 times finer pixels (Figure 4.2)(- which is only meaningful with 

correspondingly finer detectors -)and ten of these fine pixels stacked 
2 

to model a crack would give a value (e'/o) ten times as large than in 

Equation 2.90. This would cut the number of necessary scans (prior to a 
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decision) to about 15. By coincidence, for two orthogonal projection directions, 

15 scans, and an assumed angular opening of the crack model (Figure 4.2) of 

e=sin" (.1)=5.740=60, 15 steps with rotational increment 9 take it (almost over a 

full 90° rotation; this allows averaging of the information prior to a decision. 

Thus, it appears such single cracks could reliably be detected with relatively few 

scans. For an object of some 50cm x 50cm size single cracks as fine as 

.5mm in a material with 2% density variation over 5mm x 5mm areas (and 

2 2 
CTmottle := ^0 aa^ cou^c' ^e  detectable (the width of detectors has to be 

.5mm or less). This result is still much stronger than the detection probability 

if the crack is seen only edge on. Nevertheless, it appears that most of the 

information regarding the existence of the crack is due to those few 

views (only)which see the crack nearly edge on. From this consideration 

simplified detection schemes could be constructed. 

4.2 Modeling Projection 

There are at least three important aspects of estimating the line 

integrals of Equation 2.1 which represent the projection of an object. 

First, there is a bias when exponentiation of the ratio of incident of 

existing radiation is used. It is simply a result of quantum mottle. 

Second, X-ray spectra, with the exception of those arising from certain 

radioactive isotooes, are polychromatic. Different spectral components 

are however absorbed differently (see section 3.2). The effect of an 

increased fraction of high energy X-rays in the spectrum behind the object 

is regarded as beam hardening. This leads to a further deviation from the 

exponential attenuation of X-ray intensity with path length. Third, 

scattering changes the mean and variance of the X-ray intensity measured 

by the detector. 

Regarding the compensation of the bias introduced in estimation 

of line integrals a first order correction was suggested in Equation 2.29, 
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Somehwat more difficult is the compensation for polychromaticity. One 

wav to approach modeling the bias is to consider limiting situations. 

For example for a thick object («,->«■) only the hardest X-rays will 

oenetrate and they may be approximated as a monochromatic beam. For 

thin objects, the hard components will pass unaffected while only the 

soft X-rays will be attenuated by the object. This suggests to use 

in practice a polynomial fraction of the form 

b 
a1 U + a2 U  + ... 1 " LH    _  j^ 

3 + ^ +.. i-uq (4_4) 

u = -ln(r) 

where yp is the absorption per unit path length and r<l is the ratio of 

measured to incident X-ray intensity. Thus for — ■>! (no object) t»0 

and for r^,  b^yp)"1 • £n(r). The necessary order of expansion may 

be studied from the properties of Equations 3.5 and 3.17 by numerical 

techniques. The final choice of the coefficients ai and b. would depend 

on the characteristics of the X-ray spectrum and might be adjusted 

by regression or some nonlinear parameter estimation technique, [Reference 4], 

For example for p scans and n measurements per scan a total of pn 

measurements should be fit by relation Equation 4.4. For this purpose form the 

weighted squares cost function 

pn 

E 

i=l vi 

and minimize it with respect to a.  and V Here vi are the variance of 

measurements bi composed of quantum mottle and material density variations 
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When also the bias due to low photon count has to be compensated the 

approach of replacing u=-Jin(r) by u=-£n(r) + /I as suggested in Equation 2.29 

would be useful. 

Finally scatter has to be considered. We may assume that scatter 

has a low spatial frequency [Reference 43] and may thus be described by an additional 

Poisson distribution, incident on the detector i. The parameter x(i) is a 

slow function of i - possible a low order polynomial. Again we may remove 

this scatter component by weighted least squares directly from the measurements 

of the I.. Care has to be taken here because measurements (photon counts) have 

to be positive numbers. Nonlinear parameter estimation techniques are 

available to handle this. Closely related to this problem a second 

problem arises when the photon count from the primary beam is weak. 

Mainly the measurement correction for bias will have a large standard deviation 

relative to its mean complicating the series expension of Equation 2.27 for 

the bias. However it seems that in extremes of such situations 

the measurement contains very little information and it may very well be omitted 

altogether. Of course the estimation scheme has to correct for the 

missing measurement - but this is easily accomplished (Note also the 

reduced observability). 

Related to scatter let us investigate a few more interesting 

aspects of scanning especially its effect on the projection matrix A. 

The following three geometries of beams are interesting in this 

context:  (i) the pencil beam; (ii) the fan beam - or as a simplified 

version a flat, sheet-like X-ray beam; and (iii) full exposure of an 

entire object. 

The pencil beam may be viewed as an elementary unit. Other beams 

may (within limits) be composed of it. Assume for the moment the path of 

the pencil beam is described by a straight line and for simplicity 

assume a monochromatic X-ray source. In this case the intensity of the 
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primary beam as a function of the location of the point P(x,0) (Figure 4.3) 

in a homogeneous object described by 

Ip = Io e-«(L-x) (4.6) 

We may ask now what the intensity field of the scattered radiation 

looks like. A simple model for the intensity (neglecting end effects) as 

a function of the distance from the pencil beam, say at a point P(x,y) 

is 

-a/y + z 

Several questions can be approached with this model. Most important 

for us are: the intensity of the primary beam of the detector, 

the intensity due to the scattered beam at the detector, and the intensity 

of scattered radiation around the detector. 

Clearly, the intensity of radiation due to the primary beam is 

I    =i (L) = I exp(-aL). The intensity due to scatter requires 

integration. For this purpose find first the contribution I of a point 

P(x,y,z) to what is received at the detector. From Figure 4.3 

^sc = ^c  (x'y'z)   "    "T exD ("au) 

u = x/TTZZ^T      =   x/l  + -^ (4-8) 
(o-xr (D-x) 

(D-x)/" 
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X-ray 
source 
X  

col limator 

object 

detector 

plane of 
detectors 

Figure 4.3: Geometry to find bound on intensity of scattered radiation 
at a given detector location. 

detector 

col limator 

Figure 4.4: Schematic of receptive field in fan beam geometry. Note 
that a pencil beam geometry would yield a much narrower field 
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and thus the total scattered intensity for the pencil beam 

-L   a 
f f I sc,Det 0   0 

1 

-ad-x)  exp[-ar] 10e      T   ^~ 

(D-x)' 

—   exp (-ax r. 
i+ 

(D-x)' 
2 rdrdx   (4,9) 

L CD-x)l| 
Explicit integration of this expression is not simple, but some 

aporoximations seem to be useful for certain cases. For example we 

may be interested in an approximation when L-^. In this event the term 

2    2 r /(D-x) may be neqlected because with increasing r the scattered field 

intensity declines rapidly. With this approximation, mainly the 

farfield contribution is explained and one obtains after integration over r 

-L 
■CtL     T r sc,Det 0 

/  I0e 
(D-x)' 

dx 

I0Te 
tL 

1  J_ (4.10) 
P " D+L_ 

Observe the ratio of primary to secondary beam intensity as L-x» converges with 

(4.11) 

-aL , 
P o 

T 
-1 a D 

sc 

Thus it appears that "signal-to-noise" ratio (aside from quantum mottle) 

remains above some minimal value for arbitrary large objects; conveniently 

it can be increased proportional to D. On the other hand, for L-K) scatter 
_2 

could be reduced proportional to D . From geometric consideration it 

is clear that the approximation will only work for D>a . 

Next let us consider a flat, sheet like X-ray beam, assuming all 

X-rays are parallel. For this case we can adopt Equation 4.7 for the scattered 

intensity by 
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■sc =' !P *'" (4-12) 

and hence 
-|_ +00 +0 

T      _ / / / T e-o(L-x)  -az   2 2  
^CDet - 0_„   .„ IOe      '    (D-x)2[l+^4] 

(D-x)^ 

2^2 
z + y 

• exo [-ax A  +  ([)_x)2 ] dz dy dx (4.13) 

This time the contribution of the scattered radiation from a point 

P(x,y,z) does not allow the approximation u~L+x. Only the contribution 

due to elevation z may be neglected since in this direction the 

radiating field declines rapidly. 

Thus, as an approximation, integration over z (x,y fixed and at least 

one of them large compared to D and a' ) gives only a factor a . 

Thus we obtain a 2 dimensional approximation for the intensity field and 

■1  /      /      T    0-a(L-x) 
Wef a    0   ..       

I0e (D.X)2[1+     /     ] 
(D-xT 

(4.14) 

exp [-ax /l+^ j ]    dy dx 
(o-xr" 

As far as the behavior of this  integral   is concerned for L>>R>>D one may 

study 

L  +«    / / 2 2    \ 
I = /   /  e-a(/u +v " u) .  , (4.15) M   J        J       5 p  du dv 

R   -00     u2 + v2 

where u corresponds to a(L-x) and v to ay •    Condsidering a coordinate 

transform u=rcos(j), v=r sin ^ it is seen that this integral is related to 

!     +TT 
T - .   r      Q-ar(l-cos 4*) 
hi       f     ^— dr d^ (4.16) 

R -IT       r 

This latter integral   is bounded from below by ^^ where 

93 



,   +^ -aR(l-cos i>)    -  L(l- cos $) 
1=1;     i ——p, "f .      d^, (4.17) 
3   La (1- COS (j)) 

"TT 

For large L>>R this integral has a singularity of the type 

,    +* -aR(b2 
i4 = V ^ ^—^   d*'^0 (4-18) 

This suggest that scatter intensity over a narrow angular range 

dominates the intensity of the parallel component of the primary beam. 

Fortunately for a narrow range ^ scatter may not be so detrimental 

since this strong component will carry some spatial information - but it is 

virtually indistinguishable from the primary X-rays. Nevertheless 

for finite size object some "smearing out" of the field, over which 

the detector is sensitive, will occur (Figure4.4). Knowledge of this 

field is important for the selection of adequate models of the matrices 

of the type shown in Equation 2.12. 

When comparing the receptive fields for the pencil beam and the 

flat sheet paralled beam (or similarly fan beam) the latter will 

obviously yield much wider fields at some distance from the detector. 

While for the pencil beam the receptive field will not extend much 

over a  one might expect that of the flat parallel beam to extend over 

some angle 2f, or, in other words to grow in width proportional to the 

distance from the detector. This suggests, for example, to examine an 

object from both sides when a fan beam is used. 

Another important problem which arises in this context is the 

choice of the use of either a pencil beam or a flat paralled beam (or 

fan beam). Both have to be generated and approximated from point sources 

and collimation selects the beam shape. Thus the pencil beam will 

contain vastly fewer X-rays. For any given object the question arises 

which procedure would yield more information per unit time for the flaw 
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detection process. The imoortance of the term (e/a) and the discussion 

of the importance of matching pixel size to flaw size seem to be the 

major comoonents for selecting one or the other method. In other 

words it aonears to be most important to match receptive field width to 

flaw size when the variation of measurements is mainly due to material 

uncertainties (use pencil beam for small flaws). 

It should be pointed out that here we neglected the use of a 

collimator which is a very useful means to narrow receotive fields 

(section 4.34). Thus, by use of effective collimators the fan beam may 

in many cases orovide superior acquisition of information, e.g. larger 

information rates. Some numerical studies seem to be necessary to 

decide about the best choice of the method for a particular problem 

setting (flawsize, objectsize, collimator properties, object material, 

attainable beam hardness and X-ray intensities) 

From considerations similar to above discussion of scatter in flat 

parallel beam geometries it is clear that irradiation of a large volume 

rather than a slice (or a pencil) will yield still more severe scatter. 

Thus, limiting the primary X-ray beam to the region of interest (e.g. 

slice) is an imoortant concept. Related to these concepts is also the 

importance never to have several X-ray sources operate simultaneously as 

the scatter produced by one will contribute to total scatter intensity. 

Instead one may operate different sources in a sequential, pulsed mode. 

The discussions have pointed out the importance to describe 

receotive fields of detectors. This concept should reolace the over 

simplification of a modulation transfer function (MTF/ or point response 

function) when analyzing X-ray images. One of the consequences is of 
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course, in case of use of full scan CT, to qive up on the idea of using 

a simole backprojection method as oresented in Section 2.1 . Instead 

aoorooriate weighting matrices should be used [see discussion of 

generalization of backprojection]. 

4.3 Basic Signal-to-Noise considerations 

Some basic concepts which have to be considered in system designs 

are discussed now. There is no particular hierarchical structure to their 

importance - they have to be seen simultaneously for any NDE problem. For 

this reason the presentation in this section deviates from that of others. 

We will shortly expose each of the ideas. 

4.3.1 Concept of optimal beams hardness 

The oroblem addressed here is motivated in the following way. 

On the one hand consider an object through which "infinitely hard" 

X-rays are oassed. Obviously no absorption would occur and it would 

not be nossible to tell with any measurement device whether any flaw 

changed the flux of X-rays. On the other hand if one takes very soft 

X-rays none of them even arrives at a detector. Again one could not 

tell the presence of any flaw. Thus there must be intermediate values 

of beam hardness for which better results can be obtained - possible 

a single optimal hardness. 

For derivation consider the following model 

a) monochromatic beam 

b) no scatter 

c) only quantum noise (Poisson ) and independent measurement noise V 

d) small flaw 

For the effect of a small flaw see schematic in Figure 4.5. Objective 
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Al due to flaw 

object 

Figure 4.5: Effect of : Effect of a small flaw on detector. Observe dependency 
Of Al on a"I. r j 

Figure4.6: 

optimal scan 

Choice of (single) optimal scan direction by choice of 
shortest path through object. 
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is to maximize the effect AN of the flaw on the output, versus 

a - vX t  the uncertainty due to quantum noise 

Solution: 

AN = Nn [e-
a(£-d) -e-aJl] '0 

^0 
.,  -a^r ad n n Nn e  [e  -1] 

a2 = N + V = N0 e~alea<i +  V 

2    2 for a small flaw ad<<l minimize a /(AN) = f(a) w.r.t. a. 

(4.19) 

f(a) =    n0 e   +V 
., 2 -Zal      ,   ..2 
NQ e    . (ad) 

-a£,  >-2 . V   Zai,    .,-2 e  (ad)  + M- e  (ad) 
N0 

f («) = Ui^e0-1   (ad)"2 - 2(ad)"3d ea£] 
(4.20) 

. V  r0 -2a£ , J\-2  „, ,\-3 j"2a£ n + -TJ- IZle        (ad)  -2(ad)  de (4.21) 

Solution for extreme cases: 

1) V>>NQ (small photon count relative to independent measurement 
noise) 

then let f'(ahO 

Result: a   = ]/i.    In other words beam hardness should be 

adjusted until a fraction e" of the incident Nn X-rays exit. 

2) V<<N0 (large photon count dominates independent measurement noise) 

then let f'^hO 

Result: a   = Z/i.    Thus beam hardness should be adjusted 'opt -2 until a fraction e  of the incident Nn X-rays exit, 
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In summary, when V and Nn are not well known one should choose beam 

hardness so that between 37% and 14% of the radiation are passed by 

the object to be tested. 

4.3.2 Selection of best projection 

Model: a) object with fixed random density (cu = const) a 

b) known location of possible flaw (Figure 4.6) 

c) no scatter 

d) measurement noise V 

e) quantum noise  A 

The information obtained from a single projection from the presence 

of a flaw is characterised similar to Equation 4.20 by 

f(0 = a2/(AN)2 = (V + lal  + N0e"
a£)/(AN)2 

/  2      „  2   .  .,    -ctii\/M 2 -2a£.   /   .\2 =  {pm + £aa + N0e      J/NQ e (ad) 

(4.22) 

This function is monotonic increasing in i and hence is minimized by 

minimizing i. This is done by choosing the shortest path through an 

object. 

4.3.3 The relation of Noise terms to multiscan 

Model: a) constant random material density variation a-j (x,y) (Figure 4.7) 

b) monochromatic beam 

c) no scatter 

d) round void of known location 

Nomenclature: a(x,y) = a0 + o^X.y) absorption 

u(c. )•••! ine integral along straight line c^ 

Nn....incident photon count for scan i (index i sometimes 
omitted) 

99 



No 1 

i     test 
//  object 

density ag + a-j (x,y) 

Figure 4.7: Use of multiple scan angles for flaw detection at a suspicious 
location. 

density a0 + a (x,y) 

overlapoing i 
,/ area 

\nonoverlapping.v \  v N 

/ 

Figure 4 8: Simple model for finite width of receptive field of detector. 
Overlapping areas introduce correlation between measurements 
and degrade accuracy of estimation of size of void. See 
text for analysis. 
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N.   exiting photons for scan i 

d.   size of flaw in projection i 

2 2 Evaluation of noise due to material - a (corresponds to a, in Section 2) m      r       b 

ol -  E[(N-N)2] ^^ 

N0 E j [exp(- / o^ds - aQlj) -  exp[(-a0£3 

This may be approximated (for short tailed distribution of / ct-ids) by 
AC  ; 

4 2
Q  exp(-2a£) E \c{  a^s 2 (4.24) 

By characterizing the material with u(ci) =  / cuds and 
ci 

E[U(AC.) u(Ac.)] = a2 6(AC.,AC.) (4.25) 1     J     a    i  j 

one obtains for a "white noise" model of material density variation 

6(Aci, ACj) = Aci (4.26) 

6{ACi, Ac^ = 0 l7j. 

The total measured noise due to material density variation is then 

given by 

2  ,.2 -2an£  „   2  M2 „  2 
■m = N0 e  0  • ^- -a = Ni l  aa . = rC e-^o'' ■ z-- at = nU at (4.27) 

Observe the second power in the photon count. 

The contribution due to photon statistics is simply 

>-v'v ■ Ni (4-28> 

and deoends linearly on photon count.    Finally,  noise due to amplifiers 
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and background radiation is independent of the object and hence 

Jc = n ' consti = Ni  i-wo*- 2 ■ const-, = N.  • const 9 (4.29) 

Performance for multiscan.  In this case several ways exist to combine 

measurements and noise terms to specify a signal-to-noise ratio. 

(4.30) 

A simple way would be to add for p projections signals AN. due to a flaw, 
e.g. form 

P 
AN =  E  AN. 

i=l  1 

In this case one would try to minimize 

E C const + N0, e-Vi + H^  e^^i • ^ • aa
2 {A3]) 

^ _  I  i     ! I I 

E N0e-Vi eadi 

Special cases are interesting for understanding the behavior of Equation 4.31 

Let the noise due to the material dominate. In this case 

faW        -  N.2 
E Ni 

Simplify by assuming &1 = A. = i;  then by N0 = N^™2,  and Ntot = ^ Noi 

f a E  N2 (4.33) 
i£I ^_ 

Ntot 

As far asithe optimal distribution of incident intensities is concerned 

clearly N . = - N. t should be chosen. In this case 

f  1 (4.34) 
f a - 

This suggests to use a large number of projections p to obtain much 

information about the presence or absence of a flaw, (compare results 

in Equation 4.39). 
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It would be interesting to see how intensities should be distributed 

when path lengths are different. For a two-scan technique and a 

rectangular object of dimension i-.  and i„  the problem may be solved 
2 

analytically when o    is dominant. The lengthy derivation (omitted here) 

suggests for ^ = «,-, + M    M<<Z-,, that to a first aoproximation equal 

intensities should be used   along the dimension a-,  and &„. It is 

only in the higher terms of A£ that differences in intensity distribution 

arise. A second interesting case is )U = 2jt,.  In this case it is 

found that the N. should be kept very nearly the same with No-SOySN,. 

However incident intensity (at constant beam hardness!) would give 

We present these results merely as illustrations. In more general 

situations other noise terms have to be considered, the possibility of 

variable beam hardness (esoecially when using the pencil beam) should 

be incorporated in the model and clearly only numerical techniques can 

find "oDtimal" solutions to Equation 4.31. With variable beam hardness one has also 

to include the variable radiation characteristics of X-ray tubes in the 

forward direction (Equation 3.8) and variable scatter. Furthermore it 

aooears that instead of AN in Equation 4.30 a weighted set of measurements 

should be formed, e.g. 

AN = 'I ft)2 h (4.35) 

For such an expression analytic optimization is unfeasible and numerical 

techniques are called for. 

4.3.4 Uncertainty in multiscan when beams overlap 

An important generalization occurs when beams have much overlap as 
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illustrated in Figure 4.8 . The question is - how does performance of 

an estimation scheme deteriorate due to this overlap? 

Consider stripes i=l...p. Assume that each stripe has an area 

a-, and overlaps strips j over an area a... Thus the covariance of 

the measurements y. with those of stripe j (assuming material density 

to be uncorrelated between different points) is described by(neglecting 

quantum mottle) 

T   2 
Z  = cov(y,y ) =a A= 

'n llP 
A -1  2 -or  =o 

ll 

Pi 

IP 

PP 

(4.36) 

pi  *  *  pp_ 

When these stripes intersect on a void of unknown size, say e, we wish 

to find an estimate e. The best estimate in the sense of a quadratic 

loss function is found by determining w.r.t.e 

min(y )T r"' (y 
1 
1 
UJ 

) (4.37) 

As a measure of information we may use now the variance which we 

obtain from this estimate. With a flat prior distribution p{e) and 

the Gaussian distribution of y (justified from the central limit 

argument when many local density variation within stripe i cause the 

variation of y.) it follows from Bayes theorem (Equation 2.18) and p{e|y) a 

p(yle) 

var[e] =a' 
P   P 

1-1  j=l "U 

-1 
(4.38) 

When we assume for simplicity 3^=1, ai .=0 (nonoverlapping) then clearly 

v..=1, y I'O and hence 

var[e]=a2/D. (4.39) 

If however almost all  of the stripes overlap possibly yielding 
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1     1-6   1-26  1-Cp-1)6 

£ =CT^ 1-6     1    1-6 ,6> 0 (4.40) 

l-(p-l)6   .    .      1 

(for small 6) it is somewhat more difficult to find var(e). One of the 

difficulties is, that although for small 6 explicit expression for 

aooroximations toy.- and |A|can be found (the determinant is approximately 

26 and ESy,^ ~1) this first order expansion is unfortunately insufficient 

to describe the precise behavior in which var(g) decreases with 5. 

However the explicit solution for p=2 can easily be found and gives 

2   2 
var9 ic)=aZ I        S Y-M = h^-o-    ;0 < 6 < 1 

^     1=1 j=l 1J   ^ 
(4.41) 

Observe, for 5=0 (complete overlap of two stripes) this gives the 

2        2 
result for a single stripe, a/P-,^ . In the other extreme, no overlap is 

represented by 6= 1 and gives the result a7p2 =a  /2 in agreement with 

Equation 4.39, 

4.3.5 Collimators 

It appears the importance of well designed collimators cannot be 

overemphasized. Some basic considerations indicate the use of rather 

large devices when compared to the object size. Here we present a 

simple model and its idealization. The derivations are by no means 

rigorous as the necessary integrations,for quantifying collimator 

oerformance precisely,are too comolicated. Nevertheless, a useful 

description seems to result. 

Consider the arrangement of Figure 4.9. In order to characterize 

the performance of this device we wish to describe its directivity much 

in the same way as is done for antennas at radiofrequencies or with 
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a 

d 

i 

direct contribution of 
scatter to detector j 
is neglected; this 
limits of course the 
accuracy of all 
aporoximations 

Figure 4.9: Attenuation of a X-ray beam which is not aligned with 
direction of blades in collimator. For the model it is 
assumed that (b+d)«(orl ,T"'), (the absorption coefficient, 
and scatter coefficient respectively^and a>>a-l; in this 
event the scattered intensity field of a pencil beam may 
be assumed (Equation 4.7) and the scattered radiation reaching 

a detector directly may be neglected (especially in the case 
when d<<b). 

location # 1 « det # 1 

det # 2 

. det # 3 

Figure 4.10: Schematic of crosstalk between channels due to imperfect 
collimation - e.g. any material density variation at 
location # 1 has effects on all detectors via scattered, 
and by the collimator imperfectly rejected, beams. 
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microphones. We assume a thin pencil beam with corssectional area P 

and total flux IQ is incident. Now we separate the problem into three 

parts. First we describe the fraction I of the intensity !„ which reaches 

a detector without passing through any of the fans.  Next we find the 

intensity when the beam passes through the blades; and finally we evaluate 

the amount of scattered radiation reaching a detector. The derivations 

assume short enough wavelength x  of X-rays so that no reflection mechanisms 

due to a narrow glancing angle of a fan relative to the beam occurs. 

From geometry, the intensity reaching a detector i in a free path, 

averaging overall possible positions of the pencil beam is 

^ = ^ ' b max ^0' d"a tst0)] (4.42) 

a • tg(e) 

= I0 U max[0,d-a-e] 

Second, the intensity of a more strongly tilted beam incident on 

detector i, but attenuated by the blades is given by 

l}  =  I0 cos{&-aU (4.43) 

where 6 = b/d and i =  a/sin ^ The remaining problem is to evaluate 

the scattered radiation. Note, here, a contribution not only to 

detector i but to any detection j occurs and may be summarised as 

"crosstalk" between detector channels. Its evaluation is based on 

bounding and roughly guessing the value of certain integrations. 

Consider at first the scattered radiation received by detector j. 

Provided the detector is at some distance s>a  from the primary beam 

(Figure 4.9) one may replace that value by a  and bound the intensity 

received by the detector (we require actually all dimensions, except i,  to 

be much si 

material) 

be much shorter than a  so that we may treat the collimator as homogeneous 
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I2< a2    x U6)(Ad)I0 e"
a6a (4.44) 

where (Ad) is the total detector area. For detector i,(which is also 

receiving the primary beam) the scattered radiation will be larger 

presumably by a factor of the order of e. With this assumption we write 

for any detector as a bound on scatter (corresponding to channel crosstalk, 

including detectors near i) 

,2 
I. < a 

Ad' 
. I0 e 

ab  , 
•or-r- + I (4.45) 

sin$  b 

The total intensity at detector j, j^i is then by Equations 4.43 and 4.45 

«(|^)+1 (4.46) 

1 

I3< 
2    2 

a T aAd + cos l0  e' b sin (j) 

where the dimension of a and T are in cm '. From this rough bound 

a K 
the importance of a large a-p is seen.(long narrowly spaced blades of collimator) 

The result suggest that flat beams can create much"noise"due to 

crosstalk. This problem is characterized for beams i=l...n and 

detectors j-l...n by what the detectors see.[Figure 4.10]. Let g... be the 

contribution of the ith beam to the j  detector, 9^=1. 9^ = 6 for i^j. Then 

for any distrubance e. in the i  beam, the detectors receive a variation of 

signal, say y. proportiofial to e.    and receive noise. Formally 

Y = [g^] £ + n 

Yl 

Y2 

1 6 6 6 
el 

6 1 6 • £2 

6 1 • ei 

6 . 1 J^ 

+ n (4.47) 

T    2 
where cov[n n ] = a I, Estimating e e.g. by least squares gives 

t  '  E[_e]  =  [G^]"1   GT T (4.48) 

with 
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COv[e] a2[GT G]"1 
[l+(n-1)62] 26+(n-2)62 26+(n-2)62 

25+(n-2)62 '. : 

[l+(n-l)d^] 

Tl-l 

(4.49) 

This matrix is ill conditioned for large n. In particular large variances 

of ei occur, when, roughly speaking, 26n>l. If this happens a pencil 

beam will presumably yield superior performance for estimating s, 

outweighting the time savings for generating high X-ray intensities in 

the flat beam (e.g. fan beam) configuration. This result allows one 

to choose a-j in Equation 4.46 when fan beams are considered. 
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5. COMPARISON OF PERFORMANCE OF STATE OF THE ART CT AND LIMITED SCAN 

FLAW DETECTION 

Comparison of oerformance of state-of-the-art computed tomography 

and limited scan flaw detection should be based on 

i) computational complexity (time); 

ii) data-acquisition time; 

iii) error rates. 

For several reasons no general conlcusion about the superiority of one 

or the other method can be given. The preference will depend mainly 

on object size, material density variations within the object 

(homogeneity), and the characteristics of the flaw (e.g. void and/or 

cracks). 

5.1 Computational complexity 

In order to characterize computation complexity and function 0(N) 

is defined. A function f(n) is 0(n) when f(n)/N -H: for N^°, where c is 

an arbitrary fixed number. In what follows this constant will usually 

be of the order 2...10. For example f(N)=3N2 is 0(N2). 

Fast reconstruction algorithms in state-of-the-art CT require 

c  ■*- 

0(p q ) arithmetic operations, where s+t=3 [Reference 30], p is the number 

of projections and q the number of detector elements. These 

quantities are specified for any CT scanner. Typically q=100...300 

7    9 
and D = 100...200. Thus somewhere in the neighborhood of 10 ...10 

operations have to be performed for image reconstruction. By means of 

dedicated hardware (array processors) reconstruction times today are 

several tens of seconds. 

The analysis of limited scan flaw detection is in principle 

divided into two parts. The first is to find approximations for the 
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projections of an object of known shape. This part which has to be 

performed only once for any test objects requires 0(n p) operations 

as each of n pixels (or other orthogonal expansion of the image) has 

to be projected on p scan directions.  In our situation we will typically 

have q=n, for reasons explained in section 4.1. 

The second step, detection of a flaw requires only the evaluation 

of a quadratic form without crossterms between detectors (there would be 

some crossterms when consideration is given to imperfect collimation. 

This however would change the operations count only be a multiplicative 

constant). Thus, including removal of polynomials (see Section 4.2), other 

signal conditioning and executing a procedure, such as the sequential 

probability ratio test (section 2.34), the total operations count is, 

for p scans, 0(pq). Depending on the particular problem, p is much 

smaller than for full scan CT. One may therefore anticipate to cut the 

operations count per object examination by a factor of 1000. 

5.2 Data Acquisition Time 

For current CT scanners anode heat loading (pulsed, up to lOOkW) 

poses the major limitation for data acquisition [Reference 5]. One of 

the problems is a restriction on the size of the anode because the 

X-ray tube has to be moved around the patient. When stationary tubes 

(possibly with rotating anode in order to allow small focal spots) 

could be used, larger continuous power outputs may be achieved. When 

multiple scans are necessary the possibility of rotating an object may 

be considered. 

One of the possible advantages in case of the limited scan approach 

is the use of larger and more effective collimators than those used in 
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state-of-the-art CT scanners. In this situation dose requirement may 

be reduced, cutting exposure time. The oroblem can be studied numerically 

following Section 4.3.4. 

Another advantage in the limited scan tomography arises when 

a sequential aoproach is taken. For example, one may start out to take 

two orthogonal projections of an object; they should determine the 

presence of any voids or gross structural defects. Next, when this 

test is passed one may invest time by a sequential projection method 

to rule out the presence of any cracks-which are harder to detect. In 

this way time can be saved mainly when large defects are frequent and 

when they require an object to be discarded. 

5.3 Error Rates 

For the sake of simplicity of comparison we will assume either an 

error free human observe of CT images or, equivalently, optimal processing 

of image information by signal detection techniques. After this 

simplification, performance with regard to error rates has two aspects. 

First, there is a theoretical error rate which one arrives at from a 

particular model. Second there is the error rate which can acutally 

be achieved. 

The error rates are strongly dependent on the character of noise. 

For CT-scanners this problem has been studied theoretically [References 18, 24] 

However, the models used are highly idealized with regard to the 

structure of the projection matrix A, e.g. it neglects the spread of 

the receptive field of any detector or channel crosstalk [Section 4.3.4] 

This suggest that at some distance from the detector resolution is 

overestimated and the noise level underestimated. It is apparently for 

this reason that theoretical treatments agree with measurements of CT 
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image noise only for the low spatial frequency range [Reference 18]. 

Equivalently, only detection of large objects is well described by 

these analysis. However, for flaw detection the interest is mainly 

in the capability to detect small objects such as cracks. As a 

consequence of these inaccuracies an object may be regarded as free 

of flaws despite the possible presence of a flaw. 

Thus, for any particular problem setting the following approaches 

exist for finding useful solutions to above problem. For the limited 

scan technique a numerical evaluation of certain matrices is feasible 

and could allow evaluation of precision of estimates (e.g. in the 

sense of Equation 4.49). This result could be compared to the empirical 

data of CT scanners [(Reference 44; their Figures 8 and 9)]. Alternatively, 

by a combination of numerical and analytic techniques the behavior 

of very large matrices as they arise in full scan CT might be 

extrapolated from smaller matrices and permit more precise theoretical 

prediction of state-of-the-art CT performance when large objects 

have to be considered. 

Currently, in order to evaluate full scan CT performance 

phantoms are used to determine the noise and resolution, and thus 

sensitivity. When sensitivity is insufficient for a particular 

purpose dose, and with it exposure time, have to be increased. With 

reduced noise (due to quantum mottle) filter functions which yield 

higher spatial resolution (compare Section 2.1) can be used. 

NeiVertheless it appears that information is wasted; it would appear 

necessary to use generalizations of the reconstruction algorithm as 

suggested in Section 2.1. 
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In this respect the limited scan may offer some advantages. In 

limited scan typically only the forward problem of projections has 

to be solved (much prior information). For the forward problem, 

however, the use of a more sophisticated projection matrix is 

feasible for describing the receptive field of a detector more 

accurately. This is mainly a consequence of the relative simplicity of 

solving the forward problem when compared with the inversion problem. 

Thus it would be feasible to parameterize the receptive field of 

a detector (expressed in the elements of the projection matrix A) and 

use regression or some other parameter estimation technique to 

identify it, e.g. the matrix could be calibrated. For limited scan 

it seems to be feasible (say p=10) to actually evaluate the covariance 

structure of measurements and the variance of estimates of flaws 

(similar to the techniques of Section 4.3.4 and 4.3.5) The possibility 

to evaluate the covariance structures would be mainly possible due to 

matrices smaller than in full scan CT but also due to better conditioning 

of the various matrices involved (smaller ratio of largest to smallest 

eigenvalue due to stronger diagonals). In this way a sequential 

procedure can be designed which stops more precisely at the time when 

enough information about an object has been acquired to decide about 

the presence or absence of a flaw. 

In retrospect, it appears that the driving force for modeling 

here is the goal to achieve a low risk associated with missing flaws 

while keeping the speed of examination high. It is important to 

observe that the (believed) absence of flaws is what calls for a long 

continuation of performing scans. Once a flaw has been detected 

location and classification are fairly simple. Thus, rather than 

calling for a two stage technique for detecting flaws by the limited scan 
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technique with subsequent location by full scan CT, full scan CT could 

only be useful for examining those objects in which the limited scan 

technique was not capable to detect flaws. This would mainly apply 

to the situation where only a few cracks are present (see Section 4.1). 
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Appendix A2.1 

Evaluation of A* = ^ 
3a 

Recall  from  Section 2.2 a(k)=a(i,j),  k=  (n-l)i+j, and from Equation  (2.36) 

b(i) = -£n(I,/In)+    i 

By Equation (3.14) with f=yp, 

b(i) = // f(x,y)dx dy + ~ exp // f(x,y) dx dy. 
A n0 

Furthermore from the convention of Equation 2.9 about pixels (with unit area) 

b(i) = E aU,j) +y^ exn z  a{jt,j) 
j       ^0   j 

and hence 

C  +2lT)      5 if pixel  a(k)  in stripe b(i) 
3b(iM f 

9a(.] 
otherwise 

follows. 

Thus A* differs from A only by a factor (1 + 1/21.) in row i. This 

can be expressed as shown in Equation 2.37. 
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Appendix A2.2 

Computation of variance of cross product term c  Mx. 

This computation utilizes the patterned structure of (AA )' =M (as shown 

for n<4 in Tables 2.1-2.4) and the asymptotic values of the coefficients 

t. in Equation (2.51). Select two rows corresponding to orthogonal 

directions, e.g. k=l and £,=n+1. From this, for the 2-scan technique, 

Y ~ var[2E:aa  ( -x, - -yx2 - -^ X3 - .. - -j xn 

+ -x1-l+0 + 0+..+0) 
n n+1 

= 4 e2  a "4      E[  Z    ^ •  V x-i  xi]    + E[    E    ^T \   xi^ 
a i    j      n4    \ J i^k n^   k    1 

i,j7k,«, cov(xi x.) 

+ E[    E   ^x    x.] + E[^ (xk
2 + x 2)] 

= 4 e2 a^4 aa
2    [o(n2)  + o(n2)  + o(n2)  +|] 

Hence we obtain approximation Equation 2.67 

y  ~~     4e2  a'2  2n"1   =  8(e/aJ2  n"1 
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Appendix A3.1 

Models for X-ray Intensity I(X,U) from tubes 

The similarity of spectra for different tube voltages (Figure 3.3) 

suggests that all spectra are related by 

c1 Ux-j-u.,) = c2 i(x2 • u2) 

An important question is how the constant c depends on U under this 

condition. For this purpose recall Equation 3.10 and regard P as the 

anode heat dissipation. With this notation 

n - «II - c(u) /I(x-U) dx .. c(U)/ I(x-U) dx 
n P, U^J 

a 

where J is the anode current. For J=constant and xU=a 

a' U2 = ^  / 1(a) da =^1) const. 
amin 

This leads to 

c(U) = a" U3 = (U/U0)
3 

Alternatively when Pa is constant, such as when heat dissipation limits 

tube performance one obtains immediately 

Kx.u) = (u/u0)
2 i(x-u). 
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Aopendix A3.2 

Relation of X-ray quanta to tube voltage 

The energy of a single quantum is E = hv. Thus the number of quanta in 

a band d^ are 

h     h     h 
bx - E  hv  h-c 

The total number of quanta in the spectrum is 

00 

stot ^ /  sxdx = K / xix(x. U) dA 

min 

where by Appendix A3.1 

n = 3 for constant current J 

I 
ft)'."- ' n = 2 for constant heat dissipation 

Thus, with XU=a and Udx = da 

co i r\\ 

=K' U(n-2) / a I(a)da = K" U(n-2) 

a . 
mm 

Hence the number of quanta grows proportional to the tube voltage at 

constant current J(n=3) but remains fixed for constant heat load of the 

anode (n-2). 
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Appendix A3.3 

Noise due to conversion of X-ray photon Into secondary particles 

Assume x secondary particles are generated per X-ray photon and, because 

of finite X-ray energy 

0 < x < n max 

The distribution for x with maximum entropy (worst case) under this 

condition is the uniform distribution 

x ~ U[0, n  ] L   maxJ 

For this distribution 

E[x] = n II u J   max 

and 

var[x] = (n  )2/12 L J  K max 

The relative uncertainty of a measurement of secondary particles 

Is described (Independently of the number of secondary particles) by 

_ A/arLx] _ 1 

However it appears more plausible to assume for the distribution 

of x one which oeaks near E[x]. A Poisson variate (which represents 

counting statistics) seems to be a more reasonable model. In that case one 

would obtain 

u = [E(x)] 
i. 
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In other words uncertainty diminishes as the average number of 

secondary particles increases. This model seems to be useful for a 

situation where physically secondary particles are generated independently 

along the trajectory of the X-ray photon through the detector. 

Another rather extreme model would be to assume each photon's 

energy is completely converted into secondary particles. In that event 

no uncertainty would arise. This model could be viewed as unrealistic 

and one may consider a model in which after complete conversion of an 

X-ray photon into one species of secondary particles, a fraction escapes. 

This latter assumption leads to a multinomial distribution for the 

measured particles which gives again 

u a [£{x)Th 
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ADoendix A3.4 

Estimation of spectral channel width of X-ray detector 

Assume, on the average, a number x  of secondary particles are generated 

indeoendently by the X-ray photon.  In this case the number x of 

secondary particles obeys a Poisson variate and 

E[x] = y = var[x]. 

Assume furthermore the parameter \  depends linearly on the energy 

of the incident X-ray, and let A be large, say \>10. 

Consider now two X-rays with energy E, and E« where 

by 

-l rl  X 

E2 = hY2 = - 

1 

h c 

ay 1 

- ay. 

Then the two distributions for the two X-ray beams are approximated 

N( 
h c 
ax. 

h c 
ax-i 

l(^ , ^) ax. ax, 

When the two distributions can be well separated they may be regarded 

as corresponding to separate channels. A typical value for such 

separation is the use of a "2-a distance". 

Thus we can describe channel separation for two wavelength by 

yax-|  lax. 
h c 
ax 

h c 
aXo 
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This expression can be solved approximately by Taylor series expansion 

for small AX/x = ^-X-j Vx-, ,(Xp>X,). One obtains 

i ax 
h c / ?  AX \ 
ax ^ " 2x ; 

h c AX 

ax  x 

This expression can be rearranged to give the relative channel width 

AX_ 
X 

where y hc/ax . 

2u   2 
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